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Overview

Other stuff more interesting than this:

Bell’s Theorem and Bayesian Networks, http://pirsa.org/12020134

This talk:

1. Bell scenarios and quantum correlations

2. Quantum correlations in terms of group C∗-algebras

3. First applications:

I All quantum correlations in the CHSH scenario arise from qubits
(Masanes ’04)

I Tsirelson’s problem
I Hierarchy of semidefinite programs characterizing quantum

correlations (NPA ’08)

http://pirsa.org/12020134


Bell scenarios

(2, k ,m) scenario: 2 parties, for each k POVMs, m outcomes each.

state |ψ〉

measure POVM By
1 , . . . ,B

y
mmeasure POVM Ax

1, . . . ,A
x
m

input y

output b

input x

output a

Quantum correlations:

P(a, b|x , y) = 〈ψ|(Ax
a ⊗ By

b )ψ〉



Quantum correlations and group C ∗-algebras I

I By adding ancillas, the measurements can be made projective:

Ax
a · Ax

a′ = δaa′A
x
a , By

b · B
y
b′ = δbb′B

y
b .

I Label the outcomes with roots of unity

e2πi · 1
m , . . . , e2πi ·m

m

so that the measurements are described by unitaries of order m:

(Ux)m = 1 = U∗xUx = UxU
∗
x

I Then specifying the measurements is equivalent to specifying
unitaries of order m,

U1, . . . ,Uk ; V1, . . . ,Vk .



Quantum correlations and group C ∗-algebras II

I Then specifying the measurements is equivalent to specifying
unitaries of order m,

U1, . . . ,Uk ; V1, . . . ,Vk .

I A unitary of order m is the same as a unitary representation of
the cyclic group Zm = Z/mZ,

Zm → U(H), [r ] 7→ U r .

I k unitaries of order m are the same as a unitary representation of
the group

Γ = Zm ∗ . . . ∗ Zm︸ ︷︷ ︸
k factors

.

I For each party, specifying the observables is equivalent to
specifying a unitary representation:

π : Γ −→ U(H).



Group C ∗-algebras I

I For a group Γ, the group algebra C[Γ] is the vector space with
basis {δg , g ∈ Γ} and multiplication defined by

δgδg ′ = δgg ′

and extending bilinearly. A generic element of C[Γ] is
∑

g∈Γ cgδg
with finitely many coefficients cg 6= 0.

I Group representations Γ→ GL(V ) correspond to algebra
representations C[Γ]→ End(V ).

I On C[Γ], introduce the involution ∗ and the norm || · ||,(∑
g

cgδg

)∗
=
∑
g

cg−1δg ,

∣∣∣∣∣
∣∣∣∣∣∑

g

cgδg

∣∣∣∣∣
∣∣∣∣∣ = sup

π:Γ→U(H)

∣∣∣∣∣
∣∣∣∣∣∑

g

cgπ(g)

∣∣∣∣∣
∣∣∣∣∣

Define C ∗(Γ) to be the completion of C[Γ]. It is a C ∗-algebra.



Group C ∗-algebras II

I On the algebra, introduce the involution ∗ and the norm || · ||,(∑
g

cgδg

)∗
=
∑
g

cg−1δg ,

∣∣∣∣∣
∣∣∣∣∣∑

g

cgδg

∣∣∣∣∣
∣∣∣∣∣ = sup

π:G→U(H)

∣∣∣∣∣
∣∣∣∣∣∑

g

cgπ(g)

∣∣∣∣∣
∣∣∣∣∣

Define C ∗(Γ) to be the completion of C[Γ]. It is a C ∗-algebra.

I Unitary representations π : Γ→ U(H) correspond to
∗-representations π : C ∗(Γ)→ B(H).

I For each party, choosing k observables with m outcomes on H
then corresponds to a ∗-representation

C ∗(Γ) −→ B(H).

The projectors Ax
a are the images of fixed elements exa ∈ C ∗(Γ).



Quantum correlations in terms of group C ∗-algebras I

I Technically easier assumption: take observables Ax
a and By

b to live
on the same H with [Ax

a ,B
y
b ] = 0; commutativity assumption.

Then quantum correlations are of the form

P(a, b|x , y) = 〈ψ|Ax
aB

y
bψ〉.

I Choosing such observables for both Alice and Bob corresponds to
a ∗-homomorphism

π : C ∗(Γ× Γ) −→ B(H).

The projections Ax
a and By

b correspond to the images of fixed
elements exa , f

y
b ∈ C ∗(Γ× Γ).

I A state |ψ〉 ∈ H can be pulled back to a C ∗-algebraic state ρψ on
C ∗(Γ× Γ),

ρψ(γ) = 〈ψ|π(γ)ψ〉.

By construction, ρψ(exa f
y
b ) = 〈ψ|Ax

aB
y
bψ〉.



Quantum correlations in terms of group C ∗-algebras II

Theorem
Correlations P(a, b|x , y) are quantum (with the commutativity
assumption) iff there is a C ∗-algebraic state ρ on C ∗(Γ× Γ) such that

P(a, b|x , y) = ρ(exa f
y
b ).

In this sense, the exa , f
y
b ∈ C ∗(Γ× Γ) are universal observables: only

the state needs to be varied. The dual theorem is this:

Theorem
Let C x ,y

a,b ∈ R≥0 be some coefficients. Then the maximal quantum

value of
∑

a,b,x ,y C
x ,y
a,b P(a, b|x , y) is∣∣∣∣∣∣

∣∣∣∣∣∣
∑

a,b,x ,y

C x ,y
a,b e

x
a f

y
b

∣∣∣∣∣∣
∣∣∣∣∣∣
C∗(Γ×Γ)

.



Application: Quantum correlations in the CHSH scenario

I The CHSH scenario is defined by k = m = 2 (two binary
measurements per party).

I The corresponding group is Γ = Z2 ∗ Z2, which is known to be
isomorphic to Γ ∼= Z o Z2.

I The irreducible representations of such a semidirect product are
well-understood. In this case, they are all 2-dimensional.

I Then by the theorem, all quantum correlations in the CHSH
scenario can be attained with a qubit for each party.



Application: Tsirelson’s Problem

I Let Qc(Γ) be the set of quantum correlations with the
commutativity assumption. Our theorem implies that Qc(Γ) is
closed and convex.

I Let Q⊗(Γ) be the set of quantum correlations in Γ with the
standard tensor product assumption. An analogous theorem
describes the closure1 Q⊗(Γ) in terms of C ∗(Γ)⊗min C

∗(Γ)
instead of C ∗(Γ× Γ).

I For us, Tsirelson’s problem asks whether Qc(Γ) = Q⊗(Γ).

I QWEP conjecture (Kirchberg 1993):

C ∗(Γ× Γ)
?
= C ∗(Γ)⊗min C

∗(Γ)

Corollary

If the QWEP conjecture is true, then Qc(Γ) = Q⊗(Γ) for all Γ.

I A different version of Tsirelson’s problem—involving steering of a
third system—is equivalent to QWEP.

1Deciding whether Q⊗(Γ) is already closed seems to be an open problem.



Application: Hierarchy of semidefinite programs I

I By the theorem, P(a, b|x , y) is quantum iff there exists a positive
linear map ρ : C ∗(Γ× Γ)→ C with

P(a, b|x , y) = ρ(exa f
y
b ).

I Let Ln ⊂ C ∗(Γ× Γ) be the linear span of products of up to n
generators exa or f yb . Then (Ln)n∈N is an increasing sequence of
subspaces with dense union.

I If P(a, b|x , y) is quantum, then

sn : Ln × Ln −→ C, sn(γ1, γ2) = ρ(γ∗1γ2)

defines a sesquilinear form satisfying sn(γ1, γ2) = sn(γ′1, γ
′
2) if

γ∗1γ2 = γ′∗1 γ
′
2 and sn(exa , f

y
b ).



Application: Hierarchy of semidefinite programs II

I If P(a, b|x , y) is quantum, then

sn : Ln × Ln −→ C, sn(γ1, γ2) = ρ(γ∗1γ2)

defines a sesquilinear form satisfying sn(γ1, γ2) = sn(γ′1, γ
′
2) if

γ∗1γ2 = γ′∗1 γ
′
2 and sn(exa , f

y
b ).

I For fixed n, determining whether such an sn exists is a
semidefinite programming problem.

I If P(a, b|x , y) is quantum, then each of these countably many
semidefinite programs is feasible.

I The converse follows from the noncommutative Positivstellensatz

C ∗(Γ× Γ)≥0 = {γ∗γ, γ ∈ ∪nLn},

and a compactness argument.

I This is the hierarchy of semidefinite programs characterizing
quantum correlations due to Navascués, Pironio and Aćın.


