Resources

Tobias Fritz

joint work with Bob Coecke and Rob Spekkens

Perimeter Institute

May 2013

?

 $|\psi
angle = rac{1}{\sqrt{2}}(|0
angle|0
angle + |1
angle|1
angle)$

What are resources?

Resources are objects which can be converted into each other via processes:

What are resources?

Resources are objects which can be converted into each other via processes:

A mathematical theory of resources

Definition

A resource theory is an ordered commutative monoid $(D, +, 0, \geq)$.

Explanation:

- ► *D* is the set of resources.
- ► Every two resources a, b ∈ D can be combined into a + b ∈ D. This binary operation is associative and commutative.
- There is a resource $0 \in D$ which is trivial in the sense that 0 + a = a.
- The relation $a \ge b$ stands for

There is a process which turns *a* into *b*.

- If a ≥ b and b ≥ a, then a = b. Interpretation: equivalent resources are represent by the same element of D.
- If $a \ge b$ and $a' \ge b'$, then

$$a+a'\geq b+b'.$$

Let **Chem** be the ordered commutative monoid in which the resources $a, b, \ldots \in$ **Chem** are collections of molecules like

$$2H_2O_2, \qquad 2H_2O+O_2, \qquad \ldots$$

and $a \ge b$ if there is a chemical reaction (under standard conditions) of type $a \rightarrow b$.

Example: the resource theory of chemistry II

We have

$$2H_2O_2 \geq 2H_2O + O_2, \tag{1}$$

but

$2H_2O_2 + MnO_2 \geq 2H_2O + O_2 + MnO_2.$

This is an example of **catalysis**, a phenomenon which may occur in any resource theory.

As one should expect from any mathematical model of real-world phenomena, the mathematical structure of **Chem** is highly idealized.

For example, equation (1) is, strictly speaking, false: there is a reaction $2H_2O_2 \rightarrow 2H_2O + O_2$ under standard conditions, but it is extremely slow.

Example: the resource theory of paints

Let **Paint** be the ordered commutative monoid in which a resource $a \in$ **Paint** is a collection of buckets, where each bucket in *a* contains paint of a certain color.

Collection of buckets can be joined, which is a binary operation +. The empty collection of buckets is 0.

The paints in different buckets can be mixed:

 $a \ge b$ for $a, b \in$ **Paint** if b can be obtained from a by mixing paints and/or discarding buckets.

Types of resources I

Definition

 $a \in D$ is **disposable** if $a \ge 0$.

Many resources are not disposable:

These "resources" are undesirable: getting rid of them is costly or even impossible, hence their production should be avoided.

Types of resources II

Definition

 $m \in D$ is a machine if $2m + a \ge b$ implies $m + a \ge b$.

Idea: having one machine is as good as having two units of it.

If *m* is a machine, then $km + a \ge b$ for any $k \in \mathbb{N}$ implies $m + a \ge b$. For example, $0 \in D$ trivially is a machine.

Definition

 $C \in D$ is a **currency** if for all $a \in D$, there exists $\lambda \in \mathbb{R}_{\geq 0}$ such that

$$\forall \varepsilon > 0 \quad \exists n, k, m \in \mathbb{N}, \quad na \ge k \$ \ge ma,$$

$$rac{k}{n}\in \left(\lambda-arepsilon,\lambda+arepsilon
ight),\quad rac{m}{n}\in \left(1-arepsilon,1+arepsilon
ight).$$

Idea: instances of *a* can be "sold" in exchange for (roughly) λ \$, which can then be used to "buy" other resources having their own prices.

Types of resources IV

Definition

A resource $u \in D$ is **universal** if for every $a, b \in D$ there exists $n \in \mathbb{N}$ such that

$$nu + a \ge b$$
.

Idea: A universal resource can be used to turn any resource a into any resource b.

In most resource theories of interest, a universal resource does exist.

Example: in **Paint**, take one bucket of each primary color.

 \longrightarrow Existence of a universal resource is a technical assumption in some theorems.

Types of resource theories I

Definition

D is catalysis-free if

$$a+c \ge b+c \implies a \ge b.$$

Definition

D is non-interacting if

 $a \ge b_1 + b_2 \implies \exists a_1, a_2 \in D, \ a = a_1 + a_2, \ a_1 \ge b_1, \ a_2 \ge b_2.$

Idea: every process which outputs a combination of two resources can be decomposed into parallel application of two processes each of which outputs a constituent resource.

Types of resource theories II

Definition

D is complimentary if

$$a+a'=b+b', a\geq b \implies b'\geq a'.$$

Proposition

If D is non-interacting and complimentary, then D is catalysis-free.

Proof.

Assume that $a + c \ge b + c$. Since *D* is non-interacting, find $a + c = a_1 + a_2$ with $a_1 \ge b$ and $a_2 \ge c$. Since *D* is complimentary, $a + c = a_1 + a_2$ and $a_2 \ge c$ implies $a \ge a_1$. From $a \ge a_1 \ge b$ we conclude $a \ge b$. In many situations, we would like to produce many units of a resource b from many units of a resource a.

Mass production increases efficiency!

 \longrightarrow In the asymptotic limit, how many units of *b* can be produced per unit of *a*?

Rates II

Let u be a universal resource.

Definition

Let $a, b \in D$. A given $\lambda \in \mathbb{R}_{\geq 0}$ is a **rate** from *a* to *b* if

$$\forall \varepsilon > 0 \quad \exists n, k, m \in \mathbb{N}, \quad na + ku \ge mb,$$

$$\frac{m}{n} \in (\lambda - \varepsilon, \lambda + \varepsilon), \quad \frac{k}{n} < \varepsilon.$$

Note: this has nothing to do with **reaction rates** in chemistry! The rates in the resource theory **Chem** are the subject of **stoichiometry**.

Proposition

For any D and any $a, b \in D$, the set of all rates is an interval $[R_{\min}(a \rightarrow b), R_{\max}(a \rightarrow b)].$

Rates III

Definition

A valuation is a function $V: D \to \mathbb{R}$ such that

►
$$V(a+b) = V(a) + V(b)$$
,

• if $a \ge b$, then $V(a) \ge V(b)$.

Idea: a valuation measures the value of resources in a consistent way.

Theorem (Fundamental Theorem of Rates)

If D has a universal pair of resources and b is disposable, then

$$R_{\min}(a
ightarrow b) = 0, \qquad R_{\max}(a
ightarrow b) = \inf_V rac{V(a)}{V(b)}.$$

Epsilonification

In many resource theories, one does not require to outcome of a process to coincide *exactly* with a desired resource *b*; rather, it is enough if arbitrarily good approximations to *b* can be produced. Examples:

- Resource theory of (quantum) communication channels,
- Resource theory of quantum entanglement,
- Resource theory of thermodynamics,

▶ ...

How do we know what constitutes an "approximation" to *b*?

The "right" answer to this is that the resource theory needs to be equipped with the mathematical structure of a **uniform space**.

The following definition treats the special situation when the uniform structure comes from a **metric** (measure of distance).

Epsilonification II

Definition (Tentative)

An **epsilonification** of a resource theory $(D, +, 0, \ge)$ is a metric $d: D \times D \to \overline{\mathbb{R}}_{\ge 0}$ satisfying the following additional conditions: 1. For every $\varepsilon > 0$, there is $\delta > 0$ such that

$$a \stackrel{\delta}{\longleftrightarrow} b, \quad a' \stackrel{\delta}{\longleftrightarrow} b' \implies a + a' \stackrel{\varepsilon}{\longleftrightarrow} b + b'.$$

2. For every $\varepsilon > 0$, there is $\delta > 0$ such that

$$a \stackrel{\delta}{\longleftrightarrow} a' \ge b' \stackrel{\delta}{\longleftrightarrow} b \implies \begin{cases} \exists \hat{a}, a \stackrel{\varepsilon}{\longleftrightarrow} \hat{a} \ge b \\ \exists \hat{b}, a \ge \hat{b} \stackrel{\varepsilon}{\longleftrightarrow} b \end{cases}$$

3. If $d(na, nb) \rightarrow 0$ for $n \rightarrow \infty$, then a = b. Here, $a \stackrel{\varepsilon}{\longleftrightarrow} b$ stands for $d(a, b) < \varepsilon$.

Epsilonification III

The mathematical theory of epsilonified resource theories is an interesting blend of algebra, order theory, and analysis.

For example:

Proposition

The monoid (D, +, 0) is torsion-free: if $a, b \in D$ and $n \in \mathbb{N}$ such that na = nb, then a = b.

Proof.

Immediate from Axiom 3.

- Most concepts and theorems for resource theories have analogues in the epsilonified case. (Work in progress.)
- For example, a valuation also is assumed to be uniformly continuous.

The resource theory of randomness I

• A resource in **Rand** is a finite sequence $p = (p_1, \ldots, p_n)$ with

$$p_1 \geq p_2 \geq \ldots \geq p_n \geq 0$$
 and $\sum_k p_k = 1.$

Equivalently: an isomorphism class of finite probability spaces.

► The combination of resources p = (p₁,..., p_n) and q = (q₁,..., q_m) in Rand is given by taking product distributions:

$$p+q\stackrel{\mathrm{def}}{=}(p_1q_1,\ldots,p_1q_m,\ldots,p_nq_1,\ldots,p_nq_m),$$

suitably reordered.

- $0 \in \mathbf{Rand}$ is the deterministic distribution (1).
- ▶ We put p ≥ q whenever q is a coarse-graining of p: there is a function

$$f: \{1,\ldots,n\} \longrightarrow \{1,\ldots,m\}$$

such that $q_k = \sum_{j \in f^{-1}(k)} p_j$.

The resource theory of randomness II

▶ The distance between $p = (p_1, ..., p_n)$ and $q = (q_1, ..., q_m)$ is

$$d(p,q) \stackrel{\mathrm{def}}{=} egin{cases} \infty & ext{if } n
eq m \ \sum_k |p_k - q_k| & ext{if } n = m \end{cases}.$$

- ► With this, **Rand** is an epsilonified resource theory.
- **Rand** is of fundamental importance in **information theory**.

Definition

The **partition function** of p is

$$Z_{p}(\beta) = \sum_{k} p_{k}^{\beta}.$$

where $\beta \in [0, \infty]$. The **Rényi entropy** of *p* of order β is

$$H_{\beta}(p) = \frac{1}{1-\beta} \log Z_{\rho}(\beta).$$

The resource theory of randomness III

For $\beta \rightarrow 1$, one obtains the **Shannon entropy**

$$H_1(p) = -\sum_k p_k \log p_k.$$

Proposition

The Rényi entropy H_{β} : **Rand** $\rightarrow \mathbb{R}$ is a continuous valuation if and only if $\beta > 1$.

Corollary (Tentative)

$$R_{\max}(p o q) \leq \min_{eta \in [1,\infty]} rac{H_{eta}(p)}{H_{eta}(q)}$$

Conjecture: this holds with equality.

 \longrightarrow Operational meaning for Rényi entropy!

Thanks

Bob Coecke

Rob Spekkens

John Baez

Cecilia Flori

Markus Müller