A Combinatorial Approach to Nonlocality and Contextuality

arXiv:1212.4084

joint with Antonio Acín, Anthony Leverrier and Ana Belén Sainz

Tobias Fritz

Perimeter Institute for Theoretical Physics

Q+ hangout, March 2014

Cabello's proof of the Kochen-Specker theorem

- ▶ 18 vectors in \mathbb{C}^4 corresponding to the vertices,
- ▶ 9 bases (=projective measurements) corresponding to blue edges,
- ► There is no way to assign 0's and 1's to the vertices such that there is exactly one 1 in each edge. ⇒ Contextuality!

Contextuality scenarios

General setup: a **contextuality scenario** is a hypergraph H with

- ▶ a set of vertices V(H) representing measurement outcomes,
- a set of hyperedges E(H) representing measurements,
- different measurements may have outcomes in common. (See Spekkens' measurement noncontextuality).

Same as a test space!

Probabilistic models

Definition

A **probabilistic model** on *H* is an assignment of a probability p(v) to each outcome *v* such that probabilities are normalized:

$$\sum_{v\in e}p(v)=1,$$

for each measurement $e \in E(H)$.

- Same as a state on a test space!
- The set of probabilistic models is denoted $\mathcal{G}(H)$.

Quantum models

Definition

A **quantum model** on H is an assignment of probabilities $v \mapsto p(v)$ for which there exist a Hilbert space \mathcal{H} together with a state $|\psi\rangle \in \mathcal{H}$ and an assignment of **projections** $v \mapsto P_v$ on \mathcal{H} such that the projections are normalized,

$$\sum_{v\in e} P_v = \mathbb{1},$$

and the probabilities are recovered, $p(v) = \langle \psi | P_v | \psi \rangle$.

• Every quantum model is a probabilistic model:

$$\sum_{\mathbf{v}\in e} p(\mathbf{v}) = \sum_{\mathbf{v}\in e} \langle \psi | P_{\mathbf{v}} | \psi \rangle = \left\langle \psi \right| \sum_{\mathbf{v}\in e} P_{\mathbf{v}} \left| \psi \right\rangle = \langle \psi | \psi \rangle = 1.$$

• The set of all quantum models is denoted $\mathcal{Q}(H)$.

Classical models

Definition

- 1. A **deterministic model** is an assignment of 0 or 1 to every outcome such that there is exactly one 1 in each measurement.
- 2. A **classical model** is an assignment of probabilities $v \mapsto p(v)$ which is a convex combination of deterministic models.
- Every classical model is quantum.
- The classical models are exactly those which can be obtained with a noncontextual deterministic hidden variable.
- The set of all classical models is denoted C(H).
- Some scenarios *H* have quantum models, but no classical models ⇒ proof of the Kochen-Specker theorem!

Products and Bell scenarios

- ► If Alice operates in a scenario H_A and Bob in H_B , their joint measurements live in a scenario $H_A \otimes H_B$.
- ► The definition of $H_A \otimes H_B$ coincides with the **Foulis-Randall product** of test spaces.
- ▶ Operationally, the measurements in $H_A \otimes H_B$ are of three kinds:
 - 1. a pair of independently conducted measurements,
 - 2. joint measurements in which Alice measurements first, communicates her outcome to Bob, who then chooses his measurement as a function of Alice's outcome,
 - 3. joint measurements in which Alice's measurement is likewise a function of Bob's outcome.
- ▶ The latter two kinds of joint measurements enforce that every probabilistic model on $H_A \otimes H_B$ is no-signalling.

Products and Bell scenarios

► Example:

- This is the CHSH scenario!
- ▶ In this one and in any other Bell scenario, we have:
 - probabilistic model = no-signaling box,
 - quantum model = quantum correlation,
 - classical model = local correlation.

Consistent Exclusivity, level 1

Which properties distinguish quantum models from all the other probabilistic models? One possible answer is this:

Definition

A probabilistic model p satisfies **Consistent Exclusivity** if for every set of pairwise compatible outcomes $C \subseteq V$,

$$\sum_{v\in C} p(v) \le 1,$$

where a pair of outcome is compatible if they are outcomes of the same measurement.

- ► Quantum models satisfy Consistent Exclusivity, because: if {P_v}_{v∈C} is a family of pairwise orthogonal projections, then ∑_{v∈C} P_v ≤ 1.
- ► The set of all probabilistic models satisfying Consistent Exclusivity is denoted CE¹(H).
- ► In Bell scenarios: "Local Orthogonality"

Consistent Exclusivity, level ∞

Consistent Exclusivity can be activated: there are probabilistic models p ∈ CE¹(H) such that p ⊗ p ∉ CE¹(H ⊗ H).

• This happens e.g. for p = the PR-box.

Definition

p satisfies **Consistent Exclusivity at level** ∞ if $p^{\otimes n}$ satisfies Consistent Exclusivity for each $n \in \mathbb{N}$.

► The set of probabilistic models satisfying Consistent Exclusivity at level ∞ is denoted CE[∞](H).

Inspired by "(Non-)Contextuality of Physical Theories as an Axiom". Orthogonality graph Ort(H):

Inspired by "(Non-)Contextuality of Physical Theories as an Axiom". Orthogonality graph Ort(H):

Inspired by "(Non-)Contextuality of Physical Theories as an Axiom". Orthogonality graph Ort(H):

Non-orthogonality graph $NO(H) := \overline{Ort(H)}$ equipped with vertex weights p.

$p\in \mathcal{C}(H)$	\Leftrightarrow	$\alpha^*(\mathrm{NO}(H),p)=1$	(fractional packing number)
$p\in \mathcal{Q}_1(H)$	\Leftrightarrow	$\vartheta(\mathrm{NO}(H),p)=1$	(Lovász number)
$p\in \mathcal{CE}^\infty(H)$	\Leftrightarrow	$\Theta(\mathrm{NO}(H),p)=1$	(Shannon capacity)
$p\in \mathcal{CE}^1(H)$	\Leftrightarrow	$\alpha(\mathrm{NO}(H),p)=1$	(independence number)

- ► The four sets on the left form an increasing sequence:

$$\mathcal{C} \subseteq \mathcal{Q}_1 \subseteq \mathcal{C}\mathcal{E}^\infty \subseteq \mathcal{C}\mathcal{E}^1.$$

This is equivalent to well-known inequalities between graph invariants:

$$\alpha^* \ge \vartheta \ge \Theta \ge \alpha$$

- The quantum set Q(H) has not appeared in the previous list.
- ▶ So what about a graph invariant associated to $p \in Q(H)$ itself?

Theorem

There are scenarios H and H' with NO(H) = NO(H'), together with a probabilistic model p on both H and H' such that

$$p \in \mathcal{Q}(H), \qquad p \notin \mathcal{Q}(H').$$

Corollary

 $\mathcal{Q}(H)$ cannot be characterized in terms of a graph invariant of NO(H).

Non-convexity of \mathcal{CE}^∞

The relation to graph invariants lets us prove this:

Theorem

There are scenarios H, H_A and H_B such that

1. violations can be activated,

 $\mathcal{CE}^{\infty}(H_A)\otimes \mathcal{CE}^{\infty}(H_B) \not\subseteq \mathcal{CE}^{\infty}(H_A\otimes H_B),$

2. non-convexity: $C\mathcal{E}^{\infty}(H)$ is not convex.

▶ Our explicit examples are quite big: *H* has 12 320 outcomes!

New results on the Shannon capacity of graphs

Again by using the relation to graph invariants, we can turn the previous result into a theorem about these:

Theorem

There are graphs G_1 and G_2 having the following properties:

 $\begin{aligned} \Theta(G_1) &= \alpha(G_1) & \Theta(G_1 + G_2) > \Theta(G_1) + \Theta(G_2) \\ \vartheta(G_2) &= \alpha(G_2) & \Theta(G_1 \boxtimes G_2) > \Theta(G_1) \cdot \Theta(G_2) \end{aligned}$

- This strengthens results of Haemers and Alon on counterexamples to questions of Lovász and Shannon.
- ▶ In our explicit example, G_1 has 220 vertices, while G_2 has 1131460!

An inverse sandwich conjecture

The sandwich theorem:

Theorem (Lovász) • Lovász number, easy to compute $\alpha(G) \leq \vartheta(G) \leq \chi(\overline{G})$ • Independence number, hard to compute • Chromatic number, hard to compute

An inverse sandwich conjecture

$\label{eq:theorem} Theorem + Conjecture$

Quantum set, membership undecidable?

 $\mathcal{C}(H) \subseteq \mathcal{Q}(H) \subseteq \mathcal{G}(H)$

Classical set, membership decidable

- ► General probabilistic set, membership decidable <
- ▶ The first item is conjectural.
- ► The conjecture is that the meat lies in the middle of the sandwich! Ramifications of a potential proof:
 - ► an interesting class of new examples of C*-algebras without a certain finite-dimensional approximation property,
 - ▶ related to conjectural undecidability of quantum logic.

Further reading

- Main paper: Acín, Fritz, Leverrier, Sainz,
 - A Combinatorial Approach to Nonlocality and Contextuality
 - Probabilistic models on contextuality scenarios
- ► Contextuality and graph theory: Cabello, Severini, Winter,
 - (Non-)Contextuality of Physical Theories as an Axiom
 - Graph-Theoretic Approach to Quantum Correlations
- Local Orthogonality: Acín, Augusiak, Brask, Chaves, Fritz, Leverrier, Sainz,
 - ▶ Local orthogonality as a multipartite principle for quantum correlations
 - Exploring the Local Orthogonality Principle
- An observable-based approach to nonlocality and contextuality: Abramsky, Brandenburger,
 - ► The Sheaf-Theoretic Structure Of Non-Locality and Contextuality
- Operational aspects of contextuality: Spekkens,
 - Contextuality for preparations, transformations, and unsharp measurements
 - What is the appropriate notion of noncontextuality for unsharp measurements in quantum theory?