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Cabello’s proof of the Kochen-Specker theorem

I 18 vectors in C4 corresponding to the vertices,

I 9 bases (=projective measurements) corresponding to blue edges,

I There is no way to assign 0’s and 1’s to the vertices such that there
is exactly one 1 in each edge. ⇒ Contextuality!



Contextuality scenarios

General setup: a contextuality scenario is a hypergraph H with

I a set of vertices V (H) representing measurement outcomes,

I a set of hyperedges E (H) representing measurements,

I different measurements may have outcomes in common. (See
Spekkens’ measurement noncontextuality).

Same as a test space!

http://arxiv.org/abs/quant-ph/0406166
http://www.sciencedirect.com/science/article/pii/B9780444528698500141


Probabilistic models

Definition

A probabilistic model on H is an assignment of a probability p(v) to
each outcome v such that probabilities are normalized:∑

v∈e
p(v) = 1,

for each measurement e ∈ E (H).

I Same as a state on a test space!

I The set of probabilistic models is denoted G(H).



Quantum models

Definition

A quantum model on H is an assignment of probabilities v 7→ p(v) for
which there exist a Hilbert space H together with a state |ψ〉 ∈ H and
an assignment of projections v 7→ Pv on H such that the projections are
normalized, ∑

v∈e
Pv = 1,

and the probabilities are recovered, p(v) = 〈ψ|Pv |ψ〉.

I Every quantum model is a probabilistic model:∑
v∈e

p(v) =
∑
v∈e
〈ψ|Pv |ψ〉 =

〈
ψ
∣∣∣∑
v∈e

Pv

∣∣∣ψ〉 = 〈ψ|ψ〉 = 1.

I The set of all quantum models is denoted Q(H).



Classical models

Definition

1. A deterministic model is an assignment of 0 or 1 to every outcome
such that there is exactly one 1 in each measurement.

2. A classical model is an assigment of probabilities v 7→ p(v) which
is a convex combination of deterministic models.

I Every classical model is quantum.

I The classical models are exactly those which can be obtained with a
noncontextual deterministic hidden variable.

I The set of all classical models is denoted C(H).

I Some scenarios H have quantum models, but no classical models
⇒ proof of the Kochen-Specker theorem!



Products and Bell scenarios

I If Alice operates in a scenario HA and Bob in HB , their joint
measurements live in a scenario HA ⊗ HB .

I The definition of HA ⊗ HB coincides with the Foulis-Randall
product of test spaces.

I Operationally, the measurements in HA ⊗ HB are of three kinds:

1. a pair of independently conducted measurements,

2. joint measurements in which Alice measurements first, communicates
her outcome to Bob, who then chooses his measurement as a
function of Alice’s outcome,

3. joint measurements in which Alice’s measurement is likewise a
function of Bob’s outcome.

I The latter two kinds of joint measurements enforce that every
probabilistic model on HA ⊗ HB is no-signalling.



Products and Bell scenarios

I Example:

1|1

0|1

1|0

0|0

⊗

0|0 1|0 0|1 1|1

=

00|00 01|00

10|00 11|00

00|01 01|01

10|01 11|01

00|10 01|10

10|10 11|10

00|11 01|11

10|11 11|11

I This is the CHSH scenario!

I In this one and in any other Bell scenario, we have:

I probabilistic model = no-signaling box,
I quantum model = quantum correlation,
I classical model = local correlation.



Consistent Exclusivity, level 1
Which properties distinguish quantum models from all the other
probabilistic models? One possible answer is this:

Definition

A probabilistic model p satisfies Consistent Exclusivity if for every set
of pairwise compatible outcomes C ⊆ V ,∑

v∈C
p(v) ≤ 1,

where a pair of outcome is compatible if they are outcomes of the same
measurement.

I Quantum models satisfy Consistent Exclusivity, because: if {Pv}v∈C
is a family of pairwise orthogonal projections, then

∑
v∈C Pv ≤ 1.

I The set of all probabilistic models satisfying Consistent Exclusivity is
denoted CE1(H).

I In Bell scenarios: “Local Orthogonality”

http://arxiv.org/abs/1210.3018


Consistent Exclusivity, level ∞

I Consistent Exclusivity can be activated: there are probabilistic
models p ∈ CE1(H) such that p ⊗ p 6∈ CE1(H ⊗ H).

I This happens e.g. for p = the PR-box.

Definition

p satisfies Consistent Exclusivity at level ∞ if p⊗n satisfies Consistent
Exclusivity for each n ∈ N.

I The set of probabilistic models satisfying Consistent Exclusivity at
level ∞ is denoted CE∞(H).



Relation to graph invariants

Inspired by “(Non-)Contextuality of Physical Theories as an Axiom”.

Orthogonality graph Ort(H):

http://arxiv.org/abs/1010.2163
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Relation to graph invariants
Non-orthogonality graph NO(H) := Ort(H) equipped with vertex
weights p.

p ∈ C(H) ⇔ α∗(NO(H), p) = 1 (fractional packing number)

p ∈ Q1(H) ⇔ ϑ(NO(H), p) = 1 (Lovász number)

p ∈ CE∞(H) ⇔ Θ(NO(H), p) = 1 (Shannon capacity)

p ∈ CE1(H) ⇔ α(NO(H), p) = 1 (independence number)

I Q1(H) is a certain relaxation of Q(H) defined in terms of a
semidefinite program.

I The four sets on the left form an increasing sequence:

C ⊆ Q1 ⊆ CE∞ ⊆ CE1.

This is equivalent to well-known inequalities between graph
invariants:

α∗ ≥ ϑ ≥ Θ ≥ α



Relation to graph invariants

I The quantum set Q(H) has not appeared in the previous list.

I So what about a graph invariant associated to p ∈ Q(H) itself?

Theorem

There are scenarios H and H ′ with NO(H) = NO(H ′), together with a
probabilistic model p on both H and H ′ such that

p ∈ Q(H), p 6∈ Q(H ′).

Corollary

Q(H) cannot be characterized in terms of a graph invariant of NO(H).



Non-convexity of CE∞

I The relation to graph invariants lets us prove this:

Theorem

There are scenarios H, HA and HB such that

1. violations can be activated,

CE∞(HA)⊗ CE∞(HB) 6⊆ CE∞(HA ⊗ HB),

2. non-convexity: CE∞(H) is not convex.

I Our explicit examples are quite big: H has 12 320 outcomes!



New results on the Shannon capacity of graphs

I Again by using the relation to graph invariants, we can turn the
previous result into a theorem about these:

Theorem

There are graphs G1 and G2 having the following properties:

Θ(G1) = α(G1) Θ(G1 + G2) > Θ(G1) + Θ(G2)

ϑ(G2) = α(G2) Θ(G1 � G2) > Θ(G1) · Θ(G2)

I This strengthens results of Haemers and Alon on counterexamples
to questions of Lovász and Shannon.

I In our explicit example, G1 has 220 vertices, while G2 has 1 131 460!

http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=1056027
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.7699


An inverse sandwich conjecture

The sandwich theorem:

Theorem (Lovász)

I Lovász number, easy to compute

α(G ) ≤ ϑ(G ) ≤ χ(G )

I Independence number, hard to compute

I Chromatic number, hard to compute

http://arxiv.org/abs/math/9312214


An inverse sandwich conjecture

Theorem + Conjecture

I Quantum set, membership undecidable?

C(H) ⊆ Q(H) ⊆ G(H)

I Classical set, membership decidable

I General probabilistic set, membership decidable

I The first item is conjectural.

I The conjecture is that the meat lies in the middle of the sandwich!

Ramifications of a potential proof:

I an interesting class of new examples of C ∗-algebras without a
certain finite-dimensional approximation property,

I related to conjectural undecidability of quantum logic.
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