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We consider a system with finite-dimensional Hilbert space C? and Hamiltonian
H. A state p has energy E(p) = tr(pH) and entropy S(p) = —tr(plog p).

Theorem
For states p and o, the following are equivalent:

1. There exists an ancilla system of size O(y/nlog n) with state 7 and
Hamiltonian H,,. satisfying ||Hanc|| < O(n?/3) as well as an
energy-preserving unitary U such that

||Tranc[ (p®" @) UT] ®”H 0.
2. There exists an ancilla system of size o(n) with states 7 and v and

Hamiltonian Hayc satisfying ||Hanc|| < o(n) as well as energy-preserving
unitaries U and V such that

[ Trane [U(0®" © ))UT] — Tranc [V(e®" @ V1], =5 0.

3. The states have equal energy and entropy,




Definition
A macrostate is an equivalence class of states with respect to
asymptotic interconvertibility as in the theorem.

= Macrostates correspond to pairs (E, S) that can be jointly achieved.
The set of macrostates makes up the energy-entropy diagram:
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The thermal states 73 = Zﬁ_le_BH form the upper boundary.

But the diagram also describes thermodynamics arbitrarily far away from

equilibrium!



logd +

B = 4o

Entropy S

Emin
Expected energy E

The energy-entropy diagram is the set of all points (E, S) that satisfy
S > 0 and the inequality

Ag:=BE —S+logZ(B) >0

for every 3. The athermality Ag is essentially the free energy £ — 371S.



Given a state p on N copies of the system (C?)®N  we renormalize
energy and entropy for convenience,

macro(p) := (E,(Vp)7 SI(VP))

Like this, we can represent systems of any amount of substance in the
energy-entropy diagram.

Now forming a total system out of p; on (C¢)®M and p, on (C9)®N:
results in a convex combination of normalized macrostates,

macro ® = macro + — macro .
(p1 @ p2) (p1) N+ N (p2)

1
Ny + No



log d +

macro(p1)

acro(p1 ® p2)

macro(p2)

E, Emax
min



So what is it all good for? For example, let's determine how much work
can be extracted out of many copies p®" of a given state p.

Definition
Extraction of work is coupling the system to an empty battery,

p®" ® |Er)(E1|®", (1)

performing a thermodynamic transformation, and obtaining a final state
of the form
0" ® | Ex)(Eo|** (2)

with E» > E;. The amount of work extracted is then

0 (B — Ey).

The maximal amount of work that can be extracted can now be easily
read off geometrically from the energy-entropy diagram!



The maximal extracted work per copy is % given by the horizontal
distance to the boundary:
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A similar analysis applies to the case of a heat engine. Let's take the
initial state to be
‘
ﬁ ®Tﬁh L ® |E1)(E1|®,

and by symmetry the final state

14
T®n ® Blcsshot ® |E2><E2’® )

ﬂlcss—cold

= Determine Bjess-cold and Pless-hot such that the final macrostate
coincides with the initial macrostate.

» This model of a heat engine abstracts away from concepts of
“working body” or “cycle”.

> Instead, we only need to consider the initial and final states!

» There exists some protocol transforming one into the other if and
only if these states define the same macrostate.



Let Boff-cold and Pefr-not correspond to the slopes in

E

Then a straightforward computation determines the efficiency to be
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For very small battery ¢ < n, m, this approaches the Carnot efficiency!



