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We consider a system with finite-dimensional Hilbert space Cd and Hamiltonian
H. A state ρ has energy E (ρ) = tr(ρH) and entropy S(ρ) = −tr(ρ log ρ).

Theorem
For states ρ and σ, the following are equivalent:

1. There exists an ancilla system of size O(
√

n log n) with state η and
Hamiltonian Hanc satisfying ‖Hanc‖ ≤ O(n2/3) as well as an
energy-preserving unitary U such that∥∥Tranc

[
U(ρ⊗n ⊗ η)U†

]
− σ⊗n∥∥

1
n→∞−→ 0.

2. There exists an ancilla system of size o(n) with states η and ν and
Hamiltonian Hanc satisfying ‖Hanc‖ ≤ o(n) as well as energy-preserving
unitaries U and V such that∥∥Tranc

[
U(ρ⊗n ⊗ η)U†

]
− Tranc

[
V (σ⊗n ⊗ η)V †

]∥∥
1

n→∞−→ 0.

3. The states have equal energy and entropy,

E (ρ) = E (σ), S(ρ) = S(σ).



Definition
A macrostate is an equivalence class of states with respect to
asymptotic interconvertibility as in the theorem.

⇒ Macrostates correspond to pairs (E , S) that can be jointly achieved.
The set of macrostates makes up the energy-entropy diagram:
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The thermal states τβ = Z−1
β e−βH form the upper boundary.

But the diagram also describes thermodynamics arbitrarily far away from
equilibrium!
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The energy-entropy diagram is the set of all points (E , S) that satisfy
S ≥ 0 and the inequality

Aβ := βE − S + log Z (β) ≥ 0

for every β. The athermality Aβ is essentially the free energy E − β−1S.



Given a state ρ on N copies of the system (Cd )⊗N , we renormalize
energy and entropy for convenience,

macro(ρ) :=
(E (ρ)

N ,
S(ρ)

N

)
.

Like this, we can represent systems of any amount of substance in the
energy-entropy diagram.

Now forming a total system out of ρ1 on (Cd )⊗N1 and ρ2 on (Cd )⊗N2

results in a convex combination of normalized macrostates,

macro(ρ1 ⊗ ρ2) = N1
N1 + N2

macro(ρ1) + N2
N1 + N2

macro(ρ2).
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So what is it all good for? For example, let’s determine how much work
can be extracted out of many copies ρ⊗n of a given state ρ.

Definition
Extraction of work is coupling the system to an empty battery,

ρ⊗n ⊗ |E1〉〈E1|⊗`, (1)

performing a thermodynamic transformation, and obtaining a final state
of the form

σ⊗n ⊗ |E2〉〈E2|⊗` (2)

with E2 > E1. The amount of work extracted is then

` · (E2 − E1).

The maximal amount of work that can be extracted can now be easily
read off geometrically from the energy-entropy diagram!



The maximal extracted work per copy is W
n , given by the horizontal

distance to the boundary:
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A similar analysis applies to the case of a heat engine. Let’s take the
initial state to be

τ⊗n
βcold
⊗ τ⊗m

βhot
⊗ |E1〉〈E1|⊗`,

and by symmetry the final state

τ⊗n
βless-cold

⊗ τ⊗m
βless-hot

⊗ |E2〉〈E2|⊗`,

⇒ Determine βless-cold and βless-hot such that the final macrostate
coincides with the initial macrostate.

I This model of a heat engine abstracts away from concepts of
“working body” or “cycle”.

I Instead, we only need to consider the initial and final states!

I There exists some protocol transforming one into the other if and
only if these states define the same macrostate.



Let βeff-cold and βeff-hot correspond to the slopes in
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Then a straightforward computation determines the efficiency to be

η = 1− βeff-hot
βeff-cold

.

For very small battery `� n,m, this approaches the Carnot efficiency!


