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TLDR

Consider a category where the maps are “stochastic
functions”, or “parameterized probability distributions”.

This is a symmetric monoidal category

Many important notions in probability/statistics are
expressible as diagram equations in this category.

We can axiomatize the structure of this category to do
“synthetic probability”.
Several theorems admit proofs in this purely synthetic setting.
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A graphical model
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P(ABCDE) =
P(A)P(B|A)P(D|A)P(C|BD)P(E|D)

(Figure stolen from Kissinger-Jacobs-Zanasi: Causal Inference by
String Diagram Surgery)



Independence

Amap/ — X ® Y isa “joint distribution”. When are the two
variables “independent”?

» If the distribution is the product of the marginals.

» If you can generate X and Y separately and get the same
result.




Deterministic

What does it mean that f : X — Y is deterministic? “If you run it
twice with the same input, you get the same output”.



Markov categories

A Markov category (Fritz 2019) is a category with the structure to
interpret these examples: a symmetric monoidal category with a
terminal unit and a choice of comonoid on every object.

(These have been considered by several different authors)



Examples of Markov categories
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Stoch: measurable spaces and Markov kernels.
FinStoch: finite sets and stochastic matrices.
BorelStoch: Standard Borel spaces and Markov kernels.

Gauss: Finite-dimensional real vector spaces and stochastic
processes of the form “an affine map + Gaussian noise”.

SetMulti: Sets and multivalued functions.

More exotic examples.



Kolmogorov's 0 to 1 law (classical)

Theorem(Kolmogorov)

Let Xi, X2 ... be an infinite family of independent random
variables. Suppose A € o(Xi,...) (A is an event which depends
“measurably” on these variables), and A is independent of any
finite subset of the X,s. Then P(A) € {0,1}.

Example: A is the event “the sequence X; converges”. The
theorem says either the sequence converges almost surely, or it
diverges almost surely.



Digression: Infinite tensor products

An “infinite tensor product” Xy := @),y Xn is the cofiltered limit
of.the fmitc.a tensor products (X,: E= ®n€F X,,) FON finite if this limit
exists and is preserved by tensor products — ® Y

An infinite tensor product is called a Kolmogorov product if all the
projections to finite tensor products g : Xy — XF are
deterministic.

(This somewhat technical condition is necessary to fix the
comonoid structure on Xy)



Kolmogorov's 0 to 1 law (abstract)

With a suitable definition of infinite tensor products, we can prove:

Theorem(Fritz-R)

Let p: A — @iy Xn and s : @y Xi — T be maps, with s
deterministic and p presenting the indepenence of all the Xs.
Suppose in each diagram

&icr Xi is independent of T. Then sp: A — T is deterministic.

Applying this theorem to BorelStoch recovers the classical
statement.



Proof(sketch)

> First, we see thatT is independent of the whole infinite
product Xy as well.

» This statement means that two maps A — Xy ® T agree.

» By assumption the codomain is a limit, so it suffices to check
that all the projections A - Xy ® T — Xp ® T agree.

» This is true by assumption.

» A diagram manipulation now shows that T, being both
independent of Xy and a deterministic function of it, is a
deterministic function of A.



Sufficient statistics

> A “statistical model” is simply a map p: © — X.
> A “statistic” is a deterministic map s: X — V.

> A statistic is sufficient if X L©|V That means that we have «
such that




Fisher-Neyman

Classically: Suppose we are in “a nice situation” (measures with
density...)

Fisher-Neyman Theorem
A statistic s(x) is sufficient if and only if the density py(x) factors
as h(x)(s(x))

Abstract version: Suppose we are in “a nice Markov category”.
Then:

Abstract Fisher-Neyman (Fritz)

s is sufficient iff there is «: V — X so that asp = p, and so that
sa = 1y almost surely.



Thank you for listening!

Some papers mentioned:

> Fritz(2019): A synthetic approach to Markov kernels,
conditional independence and theorems on sufficient statistics
arxiv:1908.07021.

» Fritz-R(2020): Infinite products and zero-one laws in
categorical probability
arxiv:1912.02769

» Jacobs-Kissinger-Zanasi(2018): Causal inference by String

Diagram Surgery
arxiv:1811.08338
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