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TLDR

I Consider a category where the maps are “stochastic
functions”, or “parameterized probability distributions”.

I This is a symmetric monoidal category

I Many important notions in probability/statistics are
expressible as diagram equations in this category.

I We can axiomatize the structure of this category to do
“synthetic probability”.

I Several theorems admit proofs in this purely synthetic setting.
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A graphical model

(Figure stolen from Kissinger-Jacobs-Zanasi: Causal Inference by
String Diagram Surgery)



Independence

A map I → X ⊗ Y is a “joint distribution”. When are the two
variables “independent”?

I If the distribution is the product of the marginals.

I If you can generate X and Y separately and get the same
result.



Deterministic

What does it mean that f : X → Y is deterministic? “If you run it
twice with the same input, you get the same output”.



Markov categories

A Markov category (Fritz 2019) is a category with the structure to
interpret these examples: a symmetric monoidal category with a
terminal unit and a choice of comonoid on every object.

(These have been considered by several different authors)



Examples of Markov categories

I Stoch: measurable spaces and Markov kernels.

I FinStoch: finite sets and stochastic matrices.

I BorelStoch: Standard Borel spaces and Markov kernels.

I Gauss: Finite-dimensional real vector spaces and stochastic
processes of the form “an affine map + Gaussian noise”.

I SetMulti: Sets and multivalued functions.

I More exotic examples.



Kolmogorov’s 0 to 1 law (classical)

Theorem(Kolmogorov)

Let X1,X2 . . . be an infinite family of independent random
variables. Suppose A ∈ σ(X1, . . . ) (A is an event which depends
“measurably” on these variables), and A is independent of any
finite subset of the Xns. Then P(A) ∈ {0, 1}.

Example: A is the event “the sequence Xi converges”. The
theorem says either the sequence converges almost surely, or it
diverges almost surely.



Digression: Infinite tensor products

An “infinite tensor product” XN :=
⊗

n∈N Xn is the cofiltered limit
of the finite tensor products

(
XF :=

⊗
n∈F Xn

)
F⊂N finite

if this limit
exists and is preserved by tensor products −⊗ Y

An infinite tensor product is called a Kolmogorov product if all the
projections to finite tensor products πF : XN → XF are
deterministic.

(This somewhat technical condition is necessary to fix the
comonoid structure on XN)



Kolmogorov’s 0 to 1 law (abstract)

With a suitable definition of infinite tensor products, we can prove:

Theorem(Fritz-R)

Let p : A→
⊗

i∈N Xn and s :
⊗

i∈N Xi → T be maps, with s
deterministic and p presenting the indepenence of all the X s.
Suppose in each diagram

⊗
i∈F Xi is independent of T . Then sp : A→ T is deterministic.

Applying this theorem to BorelStoch recovers the classical
statement.



Proof(sketch)

I First, we see thatT is independent of the whole infinite
product XN as well.

I This statement means that two maps A→ XN ⊗ T agree.

I By assumption the codomain is a limit, so it suffices to check
that all the projections A→ XN ⊗ T → XF ⊗ T agree.

I This is true by assumption.

I A diagram manipulation now shows that T , being both
independent of XN and a deterministic function of it, is a
deterministic function of A.



Sufficient statistics

I A “statistical model” is simply a map p : Θ→ X .

I A “statistic” is a deterministic map s : X → V .

I A statistic is sufficient if X⊥Θ|V That means that we have α
such that



Fisher-Neyman

Classically: Suppose we are in “a nice situation” (measures with
density...)

Fisher-Neyman Theorem

A statistic s(x) is sufficient if and only if the density pθ(x) factors
as h(x)fθ(s(x))

Abstract version: Suppose we are in “a nice Markov category”.
Then:

Abstract Fisher-Neyman (Fritz)

s is sufficient iff there is α : V → X so that αsp = p, and so that
sα = 1V almost surely.



Thank you for listening!
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