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Introduction Story telling

What is the mathematical structure of story?

One might say, “every thought we have is a story snippet.”
Consider the events of your day; they form a story.
When one discusses a game of Chess or Go, they tell a story.
“Each protein vibrates at the frequency of the light it absorbs.”

Let’s invent something crude for story snippets and how they fit together.
Our minds are organized to think in terms of time and space.
We’re interested in what occurs within this time and space.
Abstracting, we’re interested in sheaves on a topological space T .

A sheaf S is a world of story snippets, called sections.
Each story snippet occurs in a part P ⊆ T of spacetime.

But what would be meant by characters?
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Introduction Story telling

Characters in a story-as-sheaf

A story character consists of two things.
It has a body defining its expressive possibilities (internal and external).
It has characteristic behaviors: some patterns are more likely.

We may think of the character’s expressive possibilities as a sheaf.
Like all sheaves, it’s a world of story snippets, possibilities.
You can make it interact with other characters through relations...
... but we’ll ignore that unless someone asks about it.

To have characteristic patterns, the body needs a notion of propensity.
Propensity, tendency, likelihood, probability.
We use our knowledge of tendencies and propensities to live.

In the context of sheaves, what should propensity be formalized as?
This is the sort of thing people invented stochastic processes for.
Today, we’ll discuss a notion of propensity—valuations—on sheaves.
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Introduction Story telling

Running example: Go game

Basics of Go:
The board has 19×19 intersections.
Each gets black, white, or vacant.
Board positions: BP B 319×19

Some sequences in BP are legal.
What is overarching “spacetime” here?

Go is a game of space: rectangles.
We’ll get precise on slide 8.

What is the “character’s body” here?
Body = legal sequences in BP.
We’ll get precise on slide 17.

What is the “propensity” here?
Some sequences occur more often than others.
How to formalize this? Results on slide 24.
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Introduction Story telling

Evaluation is local in Go

When we say “some sequences occur more than others”, what do we mean?
On the whole board 319×19, you never see the same sequence twice.
Instead, the statement refers to local patterns.

It is something like this that would be familiar to a go player:

Story: white invades, black attaches, white extends, black hits on the head.
This is how go players talk. Note it is entirely local.
We need to be able to evaluate the quality of local situations.
How likely would this local sequence be in a professional game?

We’ll get there, but we need to say a word about stochastic processes.
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Introduction Stochastic processes

Stochastic processes

A. Khinchin invented stochastic processes (1930s) to model similar things.
Behavior changing in time, and its characteristic propensities.
For example, a random or a not-so-random walk.

The probability of rain in some region changes through time.
In some sense it’s random, but there are correlations across time.
“What’s the probability that it’ll rain in Ottawa at second X?”
You can give a value depending only on X (e.g. time of day, season).
But how to encode that events at times t and t + 1 are correlated?
These correlations across time are what stochastic processes encode.

Example: probability distribution on functions f : R→ R:
1/2 · (∀x .f (x) � x) + 1/2 · (∀x .f (x) � 0). Very correlated.
∀x .[1/2 · (f (x) � x) + 1/2 · (f (x) � 0)]. Totally uncorrelated.
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Introduction Stochastic processes

Our approach

“Do not seek to follow in the footsteps of the wise; seek what they
sought.” – Matsuo Bashō

We have what is probably a similar intention, but different approach.
Stochastic process ≈ real-number random variables indexed by time.
We want something more abstract, more general.
We want a way to tell stories about more general characters.
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Introduction Stochastic processes

Preview

We define topological spaces and valuations internally to any topos Shv(T ).
A topological space (X ,OX ) embodies some expressive possibilities.
A valuation µ : OX → [0, 1] endows it with propensities.
By doing this internally, these somehow vary over T .

To be satisfied, we want internally-defined valuations µ to:
Be internally sensible: understand how µ behaves logically.
Be externally sensible: know what µ means sheaf-theoreatically.
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Introduction Stochastic processes

Running example 1: space of Go rectangles

Consider the topological space (Go,OGo) with:
Go B {r ⊆ 19×19 | r , �, r rectangular}

[A1..D3] � ∈ Go

Basic open: Ur B {r ′ ∈ Go | r ′ ⊆ r }
Topology: generated by (Ur )r∈Go.

Notes on the topology:
Not T1 because every open set containing r contains r ′ ⊆ r .
Write r v r ′ if every open containing r also contains r ′.

We have r v r ′⇔ r ′ ⊆ r .
Say r is less specific than r ′, or that r ′ is a specialization of r .

(Go,OGo) is a domain (continuous poset), if you know what that is.
Ur ∪ Ur ′ ⊂ Ur∪r ′, often strict.
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Introduction Stochastic processes

Another example: Temporal type theory

This was our original motivation: probabilities on behavior types.
Let IR be the space whose points are closed intervals [a, b] ⊆ R.
Basic open: U(x1 ,x2) B {[a, b] | x1 < a′ ≤ b′ < x2}.
That is, take all [a, b]’s in the open interval (x1 , x2).
Nontrivial covers: U(x1 ,x2) �

⋃
x1<y1≤y2<y2 U(y1 ,y2).

A book called Temporal type theory is about a quotient of the above.
Quotient by the translation action so that, e.g. U(0,4) � U(1,5).
This would add stationarity, but we won’t discuss this today.

You might notice a similarity between IR and Go: an order on points.
One may wonder, why not just take R as the space?
You can do that!
It’s just that, as we’ll see, valuations on R are not so interesting.
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Introduction Plan

Plan

For the remainder of my time I’ll:
explain briefly what it means to work internally to a topos;
internally define topological spaces, lower reals, and valuations; and
discuss some mostly-proven theorems and conjectures.
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Working in a sheaf topos Sheaves on a space

Categories of sheaves

Given a topological space T , a sheaf X on T consists of
A functor X : O(T )op → Set, i.e.

To each open U ⊆ T , assign a set X (U) of “sections”.
To each V ⊆ U, assign a function X (U) → X (V ), “restriction”.

Given x ∈ X (U), write x
��
V for its image in X (V ).

Such that X satisfies the following “Gluing condition”:
Suppose given opens with U �

⋃
i∈I Vi and sections xi ∈ X (Vi ).

S’pose for all open V ⊆ Vi ∩ Vj , have compatibility: xi
��
V � xj

��
V .

Then there exists a unique x ∈ X (U) with x
��
Vi � xi for all i .

A morphism of sheaves is just a natural transformation OT Set

X

Y

α .

Get a category Shv(T ). It’s a topos, but we’ll get to that soon.
Replacing “open” with “basic open” above, you get equivalent cat’y.
For Go, we have Shv(Go) � Fun

(
(Go, v), Set

)
.
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Working in a sheaf topos Sheaves on a space

Properties of a sheaf topos

A category Shv(T ) of sheaves on a site has powerful reasoning capabilies.
It has all small limits and colimits; denote terminal by 1.
It is Cartesian closed, i.e. has internal homs.

It has a natural numbers object 1 N
0 s

; UMP = “induction”.
It has a subobject classifier, a notion of “truth values”.

A subobject classifier is an object Prop and a map 1
>−→ Prop.

Note that any map out of 1 is vacuously monic.
The pullback of a monic is monic, so given f : B → Prop, get monic

(just notation) {b : B | fb � >} 1

B Prop

!

>

f

y

Call > : 1→ Prop a subobject classifier if PropB → Sub(B) is iso.

In the topos Set, the subobject classifier is 1
>−→ {>,⊥}.
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Working in a sheaf topos Internal language and logic in a topos

Logic in a topos

Let (T ,OT ) be a topological space. Let’s consider Prop ∈ Shv(T ).
It’s the sheaf U 7→ {U′ ⊆ U}; restriction given by U′

��
V B V ∩ U.

Logic: >,⊥,∧,∨,⇒,¬,⇔, ∀, ∃, all about open subsets of T .
>=biggest, ⊥=smallest, ∧ � ∩, ∨ � ∪,
∃(a : A).P(a) � ⋃{U ∈ O | ∃a ∈ A(U) | P(a) � U}, etc.
All logical operations become operations on open subsets.
See Ingo Blechschmidt’s thesis for a great introduction.

We can talk as though about ordinary sets, but “dog whistle” sheaves.1

This is called “working internally” to the topos.
This is what we’ll do to define topological spaces and valuations.

1Dog-whistle politics is about language that sounds innocuous, but actually carries
extra content for certain listeners. Here we’re talking as though just about sets, but
those with sensitive ears hear facts about sheaves.

13 / 31



Working in a sheaf topos Internal language and logic in a topos

Modalities: sublocales

One final point before we move on: modalities.
A modality is a map j : Prop→ Prop such that for all P : Prop,

P ⇒ jP;
jjP � jP; and
j(P ∧ Q) � jP ∧ jQ [equivalently, (P ⇒ Q) ⇒ (jP ⇒ jQ)]

There is an equivalence between subtoposes and modalities.
For example, an open or closed subset of T , a point of T .
Each of these subspaces (more generally sublocales) has its own j .
Today’s favorite modality: that for a point t ∈ T , denoted @t .

Adding j throughout a formula makes it about the j-subtopos.
E.g. adding j throughout ∀(x : X ).∃(y : Y ).P(x) ⇒ Q(y ) yields
... j∀(x : X ).j∃(y : Y ).j(jP(x) ⇒ jQ(y )).
If ϕ is the original formula, call the j-throughout version ϕj .

Then ϕj holds in the big topos iff ϕ holds in the j-subtopos.
So ϕ@t holds in Shv(T ) iff ϕ holds at the point t ∈ T .
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Internal spaces, lower reals, and valuations Internal topological spaces

Internal topological spaces

To define a topological space internal to Shv(T ), just write the definition.
An internal topological space consists of an object X ∈ Shv(T )...
...and a subobject OX ⊆ Sub(X ) “open sets” satisfying some rules.

X ∈ OX ;
� ∈ OX ;
∀(U ,V ∈ OX ).(U ∩ V ) ∈ OX ; and
∀(S ⊆ OX ).(

⋃
U∈S U) ∈ OX .

Logically, this would be ∀(S ⊆ OX ).(∃(U : S).U) ∈ OX .
Follow standard definition and use our sheaf-whistle. What does it mean?
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Internal spaces, lower reals, and valuations Internal topological spaces

Moerdijk’s theorem

In Spaced Spaces, Moerdijk gives the semantics of the above construction.
Every sheaf X on T has an associated bundle πX : ét(X ) → T .

It’s called the “étale space over T associated to X”
For any i : U ⊆ T , we have X (U) � {s : U → ét(X ) | πX ◦ s � i}.

Moerdijk proves that a topology OX on X as above is the same as...
... a coarsening of ét(X ) over T , i.e. a diagram

ét(X ) ét(X ,OX )

T

πX

id. on points

π(X ,OX )

The opens of ét(X ,OX ) correspond to elements of OX .
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Internal spaces, lower reals, and valuations Internal topological spaces

An internal space for Go

In Shv(Go), we can define a relevant internal space.
Every spot is either black, white, or vacant {B ,W ,V }.
Given a rectangle r ⊆ 19 × 19, let Ur be the corresponding open.
We can consider the sheaf Pos (Ur ) B {f : r → {B ,W ,V }}.
More interesting: the sheaf Seq of “legal sequences” of moves.

A list in Pos that starts empty, subsequent entries fill one vacancy.
Some subtlety on stone removal, but easy if you know the rules.( )

∈ Seq (O14..T19)

What topology should we put on Seq?
Possibility: order Seq by list prefix and use Alexandrov topology.
So a basic open is the set of futures of a given sequence.

17 / 31



Internal spaces, lower reals, and valuations Internal topological spaces

Where we’re going

We’re going to define valuations µ internally, like we did for top’l spaces.
A valuation will defined on an internal topological space (X ,OX ).
It’ll be a map µ : OX → [0, 1] satisfying some conditions.
But what exactly is [0, 1]? Everything’s supposed to be a sheaf on T .

Next we’ll internally define
¯
R=“lower reals”.

Then we’ll discuss their semantics.
The interval [0, 1] is a subsheaf of

¯
R .

We’ll finish this section by giving the definition of valuation.
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Internal spaces, lower reals, and valuations Lower reals

Internal real numbers and their semantics

Dedekind (1872) defined real numbers in terms of “pairs of cuts” r ⊆ Q×Q.
His definition turns out to have very pleasing semantics in toposes.

Let Q ∈ Shv(T ) be the locally constant sheaf of rationals.
Define R ⊆ PropQ×Q internally using Dedekind’s axioms.
Dubuc (citing Joyal): R is isomorphic to sheaf of maps T → R !
This is considered evidence that “internal language really works”.

We will use a similar construction called “lower reals”: only one cut.
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Internal spaces, lower reals, and valuations Lower reals

Internal definition of lower reals

Define
¯
R ⊆ PropQ to be those r> : Q→ Prop such that:2

“nonempty” ∃(q : Q).r>q
“down-closed” ∀(q, q′ : Q).(r>q′ ∧ q′ > q) ⇒ r>q
“rounded” ∀(q : Q).r>q⇒ ∃(q′ : Q).r>q′ ∧ q′ > q

The real is defined to be its set of rational lower-bounds.
We’ll write q < r or r > q from now on, rather than r>q.
For any rational q, can define q> ∈

¯
R by q>q

′ B q > q′.
Write r ≤ r ′ to mean: ∀q.(q < r ) ⇒ (q < r ′).
Define addition (r1 + r2) ∈

¯
R of lower reals r1 , r2 ∈

¯
R by

q < (r1 + r2) iff ∃(q1 , q2).(q � q1 + q2) ∧ (q1 < r1) ∧ (q2 < r2).

One can show (
¯
R , 0,+) forms an ordered commutative monoid.

2Here r> is just a symbol; often people use δ : Q→ Prop.
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Internal spaces, lower reals, and valuations Lower reals

Semantics of lower reals

Semantically, the sheaf
¯
R on T corresponds to:

The sheaf that assigns to each U ∈ OT the set

¯
R(U) � {f : U → R | f is lower semicontinuous}

Equivalently, we can say this in terms of a different topology on R.
The sets (Ur )r∈R, with Ur B {r ′ ∈ R | r<r ′}, form a topology U .
The sheaf

¯
R is that of continuous maps to (R,U).

Let’s return to our running examples to see what
¯
R looks like there.
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Internal spaces, lower reals, and valuations Lower reals

Lower reals in our examples

In the topos Shv(Go), a lower real assigns a lower s-c. function f : Go→ R.
That is, to each rectangle r , a real number f (r ),...
... such that if r ′ ⊆ r then f (r ′) ≥ f (r ).

9% 15% 18%

12%

30%

15% 20%

35% 67%

In the topos Shv(IR), a lower real assigns a lower s-c. function f : IR→ R.
That is, to each interval [a, b], a real number f [a, b],...
... such that if [a′, b′] ⊆ [a, b] then f [a′, b′] ≥ f [a, b], and also...
... if [a, b] � ⋂{[ai , bi ] | i ∈ I } then f [a, b] � supi∈I f [ai , bi ].
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Internal spaces, lower reals, and valuations Probability valuations

Probability valuations

A probability valuation on (X ,OX ) is a function µ : OX →
¯
R such that:

(Strict) µ(⊥) � 0;
(Normalized) µ(>) � 1;
(Monotonic) U ⊆ V ⇒ µ(U) ≤ µ(V );
(Modular) µ(U) + µ(V ) � µ(U ∪ V ) + µ(U ∩ V ); and
(Scott continuous) for any directed subset D ⊆ OX , have

sup
U∈D

µ(U) � µ
( ⋃
U∈D

U
)
.

It’s a reasonable notion of probability.
On well-behaved spaces, valuations and probability measures coincide.
It is also appealing from a CT point of view.

We can consider the above as an internal definition on Shv(T ).

23 / 31



Internal spaces, lower reals, and valuations Probability valuations

Go example

Recall that in the topos Shv(Go), we had
Seq of legal move-sequences (Alexandrov) as an internal space.
Lower real = function f : Go→ R such that r ′ ⊆ r ⇒ f (r ′) ≥ f (r ).

So what’s a valuation µ : (Seq,OSeq) →
¯
R?

It’s a sheaf morphism, a natural transformation. Choose open Ur .
An element s ∈ OSeq(Ur ) is a legal move prefix on rectangle r .
It is assigned a value µUr (s) ∈ ¯

R(Ur ), a lower real.3

1%

4%

15%

3All probabilities shown were casually made up; they’re not from data.
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Internal spaces, lower reals, and valuations Probability valuations

Does it work as expected?

While a function µ : OX →
¯
R looks good, does it work?

Assigning a lower real to each legal Go sequence seems good.
Implicitly it seems that we’re imagining a valuation at each rectangle.
Is that what we get when we evaluate the semantics of a valuation?

This leads us to the final section of the talk.
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Some results Axioms on our topos

Choosing axioms

Under what conditions do valuations have “understandable” semantics?
We choose some axioms on our topos; this is a bit of an art.
Usually good to choose axioms that, as much as possible are:

small in number;
semantically meaningful;
logically simple; and
sufficient to prove something sensible.

26 / 31



Some results Axioms on our topos

Axioms on our topos

There is a type Pt and a function @ : Pt→ Modality, such that

(Boolean “points”) ∀(P : Prop)(t : Pt).@tP ∨ (P ⇒ @t⊥)

(Enough “points”) ∀(P : Prop).
(∀(t : Pt).@tP

)
⇒ P

(N “specialization-flabby”)
∀(P : N→ Prop)(t : Pt).

@t∃(n : N).P(n) ⇒ ∃(n : N).@tP(n).

Note that Q and N are internally bijective so Axiom 3 holds for Q too.
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Some results Valuations are determined at points

Families of valuations

Think of an internal space (X ,OX ) as a space X → T mapping to T .
To every point t ∈ T , let Xt ⊆ X denote the fiber subspace.
If t v t′, get continuous restriction map Xt →Xt′.

A valuation µ : OX →
¯
R induces a family of valuations µt : Xt → R.

Internally, maps @tOX → @t ¯
R satisfying @t-local def’n of valuation.

This family (µt)t∈T is compatible with restriction along t v t′.
It’s also l-semicontinuous: for U : OX , µ(U) > q defines a lower real.

The above can be made precise internally and externally.
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Some results Valuations are determined at points

Valuations are @-locally defined

Assuming the three axioms above, we have a proof4 of the following:

Theorem

Let (X ,OX ) be an internal space. Restricting a valuation on X to a family
of @-local valuations implements a bijection between

1. valuations on X , and
2. those families of @-local valuations which are compatible and lower

semicontinuous.

This holds internally, and an analogous statement holds externally as well.

4The proof isn’t fully complete, but we’re fairly confident.
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Some results Valuations are determined at points

Upshot

Thus the internal notion of valuation on T has very reasonable semantics.
It’s a “measure space” at every point t ∈ T , such that

specialization preserves measure and
having probability strictly greater than q is an open condition.

For Go, every rectangle gets a probability measure on legal sequences.
The likelihood of a sequence grows as the rectangle shrinks.
There’s no continuity condition.

Similarly for IR, but there is a continuity condition in that case.

What should the poset of points be for stochastic processes?
Reasonable options: finite subsets or closed intervals of N, Z, R, etc.

While the conjecture also applies for the case of R, it’s a bit boring.
The specialization order on points is trivial.
So probability distributions at varying points are uncorrelated.
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Conclusion

Summary

Valuations are an alternative to measures and have reasonable semantics.
They are logical constructs and can be manipulated as such.
In spatial (and more gen’l) toposes, they’re defined locally at points:

The valuation is completely determined by its values on points.
A compatible, l-sc family of point valuations induces a valuation.

We expect this formalism can treat all standard stochastic processes.

Main idea: to get correlations, use a poset of points.
The probability of an event increases under restriction.

1%

4%

Stories: usually mundane at a micro-level and novel in a larger context.

Questions and comments are welcome. Thanks!
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