What is a probability monad?

Paolo Perrone

Massachusetts Institute of Technology (MIT)

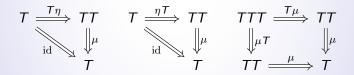
Categorical Probability 2020 Tutorial video

Definition:

Let C be a category. A monad on C consists of:

- A functor $T : C \rightarrow C$;
- A natural transformation $\eta : id_{\mathsf{C}} \Rightarrow \mathsf{T}$ called *unit*;
- A natural transformation $\mu : TT \Rightarrow T$ called *composition*;

such that the following diagrams commute:



Idea:

A monad is like a consistent way of extending spaces to include generalized elements and generalized functions of a specific kind.

Idea:

Idea:

A monad is like a consistent way of extending spaces to include generalized elements and generalized functions of a specific kind. A functor $T : C \rightarrow C$ consists of:

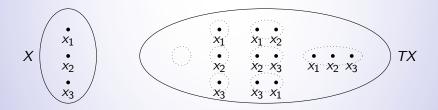
1. To each space X, an "extended" space TX.

Idea:

- 1. To each space X, an "extended" space TX.
- 2. Given $f: X \to Y$, an "extension" $Tf: TX \to TY$.

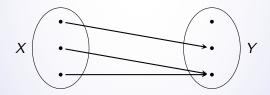
Idea:

- 1. To each space X, an "extended" space TX.
- 2. Given $f: X \to Y$, an "extension" $Tf: TX \to TY$.



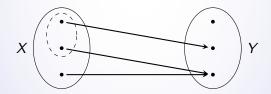
Idea:

- 1. To each space X, an "extended" space TX.
- 2. Given $f: X \to Y$, an "extension" $Tf: TX \to TY$.



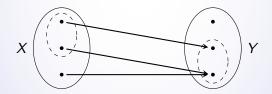
Idea:

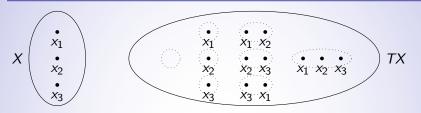
- 1. To each space X, an "extended" space TX.
- 2. Given $f: X \to Y$, an "extension" $Tf: TX \to TY$.

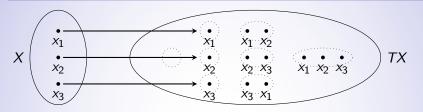


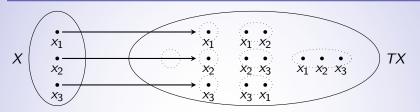
Idea:

- 1. To each space X, an "extended" space TX.
- 2. Given $f: X \to Y$, an "extension" $Tf: TX \to TY$.

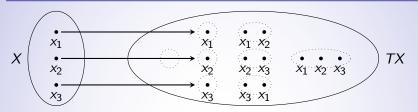








- A natural transformation η : id_C \Rightarrow *T* consists of:
- 1. To each X a map $\eta_X : X \to TX$, usually monic.



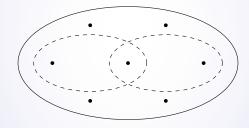
- A natural transformation $\eta : id_{\mathsf{C}} \Rightarrow \mathsf{T}$ consists of:
- 1. To each X a map $\eta_X : X \to TX$, usually monic.
- 2. This diagram must commute:

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} & Y \\ \downarrow^{\eta_X} & & \downarrow^{\eta_Y} \\ TX & \stackrel{Tf}{\longrightarrow} & TY \end{array}$$

- A natural transformation μ : $TT \Rightarrow T$, is:
- 1. For each X a map $\mu_X : TTX \to TX$;
- 2. Again a naturality diagram as before.

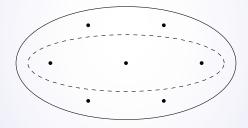
A natural transformation μ : $TT \Rightarrow T$, is:

- 1. For each X a map $\mu_X : TTX \to TX$;
- 2. Again a naturality diagram as before.



A natural transformation μ : $TT \Rightarrow T$, is:

- 1. For each X a map $\mu_X : TTX \to TX$;
- 2. Again a naturality diagram as before.

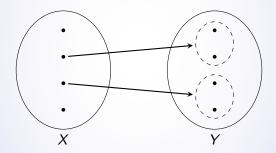


Definition:

Let T be a monad on C. A Kleisli morphism from X to Y is a morphism $X \rightarrow TY$.

Definition:

Let T be a monad on C. A Kleisli morphism from X to Y is a morphism $X \rightarrow TY$.



Definition:

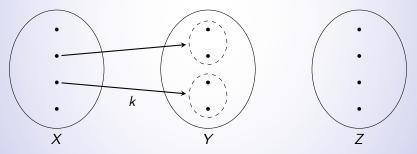
Given Kleisli morphisms $k : X \to TY$ and $h : Y \to TZ$, their *Kleisli* composition is the morphism $h \circ_{kl} k$ given by:

$$X \xrightarrow{k} TY \xrightarrow{Th} TTZ \xrightarrow{\mu} TZ$$

Definition:

Given Kleisli morphisms $k : X \to TY$ and $h : Y \to TZ$, their *Kleisli* composition is the morphism $h \circ_{kl} k$ given by:

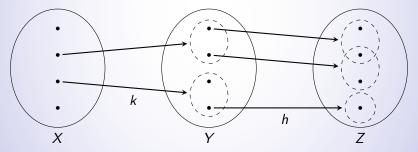
 $X \xrightarrow{k} TY \xrightarrow{Th} TTZ \xrightarrow{\mu} TZ$



Definition:

Given Kleisli morphisms $k : X \to TY$ and $h : Y \to TZ$, their *Kleisli* composition is the morphism $h \circ_{kl} k$ given by:

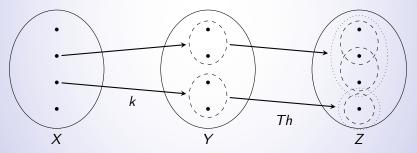
 $X \xrightarrow{k} TY \xrightarrow{Th} TTZ \xrightarrow{\mu} TZ$



Definition:

Given Kleisli morphisms $k : X \to TY$ and $h : Y \to TZ$, their *Kleisli* composition is the morphism $h \circ_{kl} k$ given by:

 $X \xrightarrow{k} TY \xrightarrow{Th} TTZ \xrightarrow{\mu} TZ$

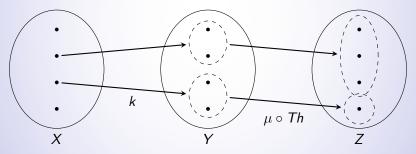


7 of 27

Definition:

Given Kleisli morphisms $k : X \to TY$ and $h : Y \to TZ$, their *Kleisli* composition is the morphism $h \circ_{kl} k$ given by:

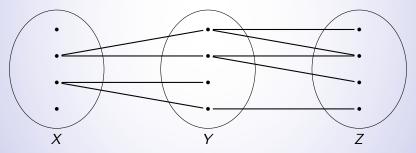
 $X \xrightarrow{k} TY \xrightarrow{Th} TTZ \xrightarrow{\mu} TZ$



Definition:

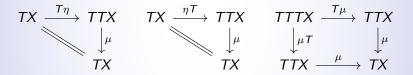
Given Kleisli morphisms $k : X \to TY$ and $h : Y \to TZ$, their *Kleisli* composition is the morphism $h \circ_{kl} k$ given by:

 $X \xrightarrow{k} TY \xrightarrow{Th} TTZ \xrightarrow{\mu} TZ$



Exercise:

Prove that Kleisli morphisms form a category thanks to the commutativity of these diagrams:



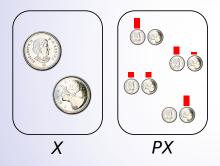
where the identity morphisms of the Kleisli category are given by the units $\eta: X \to TX$.

Idea [Giry, 1982]: Spaces of "random elements" generalizing usual elements.

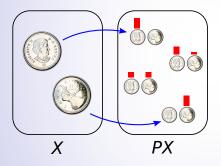
Base category C

Idea [Giry, 1982]: Spaces of "random elements" generalizing usual elements.

• Base category C



- Base category C
- Functor $X \mapsto PX$

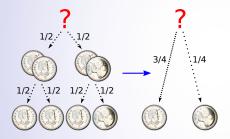


- Base category C
- Functor $X \mapsto PX$
- Unit $\delta: X \to PX$

- Base category C
- Functor $X \mapsto PX$
- Unit $\delta: X \to PX$

- Base category C
- Functor $X \mapsto PX$
- Unit $\delta: X \to PX$

- Base category C
- Functor $X \mapsto PX$
- Unit $\delta: X \to PX$

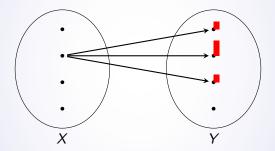


- Base category C
- Functor $X \mapsto PX$
- Unit $\delta: X \to PX$

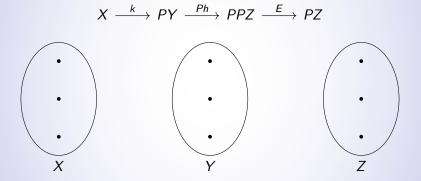


- Base category C
- Functor $X \mapsto PX$
- Unit $\delta: X \to PX$
- Composition $E: PPX \rightarrow PX$

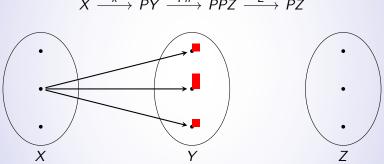
A Kleisli morphism from X to Y is a morphism $X \rightarrow PY$. We can interpret this as a "random function" or "random transition".



Given Kleisli morphisms $k : X \to PY$ and $h : Y \to PZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:



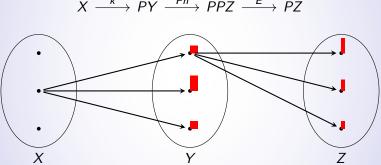
Given Kleisli morphisms $k: X \rightarrow PY$ and $h: Y \rightarrow PZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:



$$X \xrightarrow{k} PY \xrightarrow{Ph} PPZ \xrightarrow{E} PZ$$

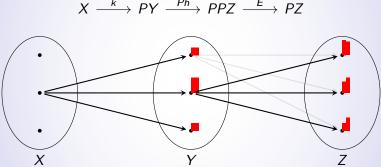
11 of 27

Given Kleisli morphisms $k: X \rightarrow PY$ and $h: Y \rightarrow PZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:



$$X \xrightarrow{k} PY \xrightarrow{Ph} PPZ \xrightarrow{E} PZ$$

Given Kleisli morphisms $k: X \rightarrow PY$ and $h: Y \rightarrow PZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:

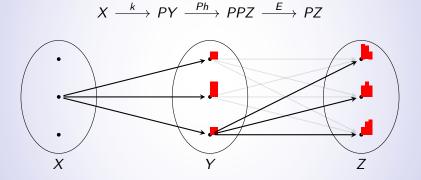


$$X \xrightarrow{\kappa} PY \xrightarrow{P\Pi} PPZ \xrightarrow{E} F$$

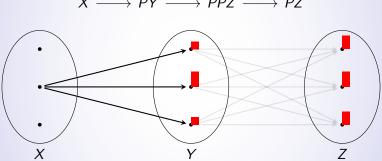
E

L DL

Given Kleisli morphisms $k : X \to PY$ and $h : Y \to PZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:



Given Kleisli morphisms $k : X \to PY$ and $h : Y \to PZ$, their Kleisli composition is the morphism $h \circ_{kl} k$ given by:



 $X \xrightarrow{k} PY \xrightarrow{Ph} PPZ \xrightarrow{E} PZ$

11 of 27

Definition:

Let X be a set. A *f.s. distribution* on X is a function $p: X \rightarrow [0, 1]$ such that

• It is nonzero for finitely many $x \in X$;

•
$$\sum_{x\in X} p(x) = 1.$$

We denote by DX the set of f.s. distributions on X.

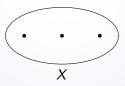
Definition:

Let X be a set. A f.s. distribution on X is a function $p: X \to [0, 1]$ such that

• It is nonzero for finitely many $x \in X$;

•
$$\sum_{x\in X} p(x) = 1.$$

We denote by DX the set of f.s. distributions on X.



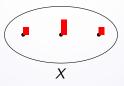
Definition:

Let X be a set. A *f.s. distribution* on X is a function $p: X \rightarrow [0,1]$ such that

• It is nonzero for finitely many $x \in X$;

•
$$\sum_{x\in X} p(x) = 1.$$

We denote by DX the set of f.s. distributions on X.



Definition:

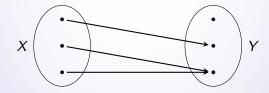
Let $f : X \to Y$ be a function and $p \in DX$. The *pushforward of p* along f is the distribution $f_*p \in DY$ given by

$$f_*p(y) \coloneqq \sum_{x \in f^{-1}(y)} p(x).$$

Definition:

Let $f : X \to Y$ be a function and $p \in DX$. The *pushforward of p* along f is the distribution $f_*p \in DY$ given by

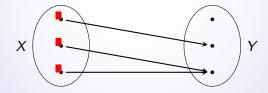
$$f_*p(y) \coloneqq \sum_{x \in f^{-1}(y)} p(x).$$



Definition:

Let $f : X \to Y$ be a function and $p \in DX$. The *pushforward of p* along f is the distribution $f_*p \in DY$ given by

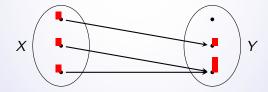
$$f_*p(y) \coloneqq \sum_{x \in f^{-1}(y)} p(x).$$



Definition:

Let $f : X \to Y$ be a function and $p \in DX$. The *pushforward of p* along f is the distribution $f_*p \in DY$ given by

$$f_*p(y) \coloneqq \sum_{x \in f^{-1}(y)} p(x).$$



Definition:

Let X be a set. The map $\delta: X \to DX$ maps $x \in X$ to the distribution $\delta_x \in DX$ given by

$$\delta_x(y) = \begin{cases} 1 & y = x; \\ 0 & y \neq x. \end{cases}$$

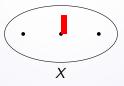
This gives a natural map $\delta : X \to DX$, a component of the unit of the monad.

Definition:

Let X be a set. The map $\delta : X \to DX$ maps $x \in X$ to the distribution $\delta_x \in DX$ given by

$$\delta_x(y) = \begin{cases} 1 & y = x; \\ 0 & y \neq x. \end{cases}$$

This gives a natural map $\delta : X \to DX$, a component of the unit of the monad.



Definition:

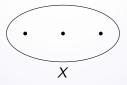
Let X be a set. Given $\xi \in DDX$, define $E\xi \in DX$ to be distribution given by

$$\mathsf{E}\xi(x) \coloneqq \sum_{p \in DX} p(x)\,\xi(p).$$

Definition:

Let X be a set. Given $\xi \in DDX$, define $E\xi \in DX$ to be distribution given by

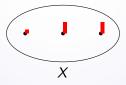
$$\mathsf{E}\xi(x) \coloneqq \sum_{p \in DX} p(x)\,\xi(p).$$



Definition:

Let X be a set. Given $\xi \in DDX$, define $E\xi \in DX$ to be distribution given by

$$\mathsf{E}\xi(x) \coloneqq \sum_{p \in DX} p(x)\,\xi(p).$$



Definition:

Let X be a set. Given $\xi \in DDX$, define $E\xi \in DX$ to be distribution given by

$$\mathsf{E}\xi(x) \coloneqq \sum_{p \in DX} p(x)\,\xi(p).$$

Definition:

Let X be a set. Given $\xi \in DDX$, define $E\xi \in DX$ to be distribution given by

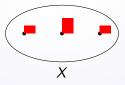
$$\mathsf{E}\xi(x) \coloneqq \sum_{p \in DX} p(x)\,\xi(p).$$



Definition:

Let X be a set. Given $\xi \in DDX$, define $E\xi \in DX$ to be distribution given by

$$\mathsf{E}\xi(x) \coloneqq \sum_{p \in DX} p(x)\,\xi(p).$$



Kleisli morphisms:

A Kleisli morphism for D is a function $k : X \to DY$. In other words, it is function $\bar{k} : X \times Y \to [0, 1]$ such that

- For each x ∈ X, k̄(x, −): Y → [0, 1] is nonzero in finitely many entries;
- For each $x \in X$, $\sum_{y \in Y} \overline{k}(x, y) = 1$.

Kleisli morphisms:

A Kleisli morphism for D is a function $k : X \to DY$. In other words, it is function $\bar{k} : X \times Y \to [0, 1]$ such that

 For each x ∈ X, k̄(x, −): Y → [0, 1] is nonzero in finitely many entries;

• For each
$$x \in X$$
, $\sum_{y \in Y} \overline{k}(x, y) = 1$.

Kleisli composition:

The Kleisli composition of $k : X \rightarrow DY$ and $h : Y \rightarrow DZ$ is given by the Chapman-Kolmogorov equation:

$$(h \circ_{kl} k)(x,z) = \sum_{y \in Y} k(x,y) h(y,z).$$

Let X be a measurable space. Define PX to be

• The set of probability measures on X

Let X be a measurable space. Define PX to be

- The set of probability measures on X
- Equipped with the σ -algebra generated by the evaluation functions $\varepsilon_A : PX \to \mathbb{R}$ given by

$$p \mapsto p(A)$$

for all $A \subseteq X$ measurable.

Let X be a measurable space. Define PX to be

- The set of probability measures on X
- Equipped with the σ -algebra generated by the evaluation functions $\varepsilon_A : PX \to \mathbb{R}$ given by

$$p \longmapsto p(A)$$

for all $A \subseteq X$ measurable.

 Equivalently, the σ-algebra is generated by the "integration" functions ε_f : PX → ℝ given by

$$p\longmapsto\int f\,dp,$$

for all $f: X \to [0, 1]$ measurable.

Functoriality:

Let $f : X \to Y$ be a measurable function. Given a measure $p \in PX$, recall that the pushforward measure $f_*p \in PY$ is given by

$$f_*p(B) := p(f^{-1}(B)).$$

We get a measurable map $Pf : PX \rightarrow PY$ which makes P a functor.

Functoriality:

Let $f : X \to Y$ be a measurable function. Given a measure $p \in PX$, recall that the pushforward measure $f_*p \in PY$ is given by

 $f_*p(B) := p(f^{-1}(B)).$

We get a measurable map $Pf : PX \rightarrow PY$ which makes P a functor.

Unit:

Given a measurable space X, to each $x \in X$ we can give the Dirac delta measure $\delta_x \in PX$. This gives a measurable map $\delta : X \to PX$, which is natural, and forms a component of the unit of the monad.

Multiplication:

Given a measurable space X and a measure $\pi \in PPX$, we define the measure $E\pi \in PX$ by

$$E\pi(A) \coloneqq \int_{PX} p(A) d\pi(p),$$

This gives a measurable map $E : PPX \rightarrow PX$ which is natural in X and forms a component of the monad multiplication.

Kleisli morphisms:

A Kleisli morphism is a measurable map $k : X \to PY$, in other words, a *Markov kernel* between X and Y. Denote $k(x) \in PY$ by k_x .

Kleisli morphisms:

A Kleisli morphism is a measurable map $k : X \to PY$, in other words, a *Markov kernel* between X and Y. Denote $k(x) \in PY$ by k_x .

Kleisli composition:

The composition of Kleisli morphisms reproduces the Chapman-Kolmogorov equation for general measures. Given $k: X \rightarrow PY$ and $h: Y \rightarrow PZ$, we get that

$$(h \circ_{kl} k)(x)(C) = \int_Y h_y(C) dk_x(y)$$

for each $x \in X$ and for each $C \subseteq Z$ measurable.

Other probability monads

5	
ires	
au-smooth Borel prob. measures	
Radon prob. measures	
Radon prob. measures of FFM	

More on the nLab, "probability monad" [nLab article].

Joints and marginals

Idea:

Probability theory is mostly about *interactions* of random variables.

• Composite states X × Y

22 of 27

Joints and marginals

Idea:

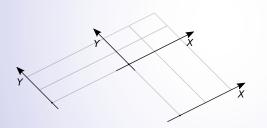
Probability theory is mostly about *interactions* of random variables.

• Composite states X × Y

Joints and marginals

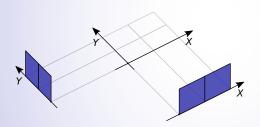
Idea:

Probability theory is mostly about interactions of random variables.



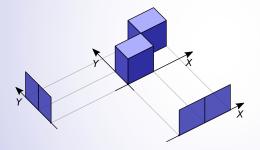
• Composite states X × Y

Idea:



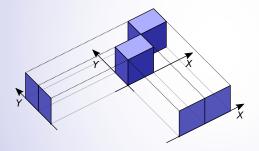
- Composite states X × Y
- Given marginals

Idea:



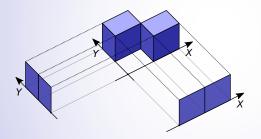
- Composite states X × Y
- Given marginals
- Many possible joints

Idea:



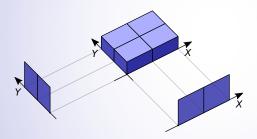
- Composite states X × Y
- Given marginals
- Many possible joints

Idea:



- Composite states X × Y
- Given marginals
- Many possible joints

Idea:



- Composite states X × Y
- Given marginals
- Many possible joints
- One canonical choice of "independence"

Idea:

Given objects X and Y, a probability distribution on $X \times Y$ is not just pair of distributions on X and Y separately. However, given $p \in PX$ and $q \in PY$, we get a measure $p \otimes q \in P(X \times Y)$.

$$PX \times PY \longrightarrow P(X \times Y)$$

Idea:

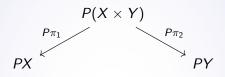
Given objects X and Y, a probability distribution on $X \times Y$ is not just pair of distributions on X and Y separately. However, given $p \in PX$ and $q \in PY$, we get a measure $p \otimes q \in P(X \times Y)$.

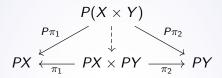
$$PX \times PY \longrightarrow P(X \times Y)$$

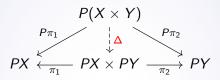
This gives a monoidal structure to the probability monad. (Technically, we need ∇ together with a map $1 \rightarrow P1$, but for probability monads 1 and P1 are uniquely isomorphic.)

$$\begin{array}{ccc} PX \times PY \times PZ & \xrightarrow{\nabla \times \mathrm{id}} & P(X \times Y) \times PZ \\ & & & & & \\ & & & & & \\ & & & & & \\ PX \times P(Y \times Z) & \xrightarrow{\nabla} & P(X \times Y \times Z) \end{array}$$

24 of 27







Operations on distributions:

Let $f: X \times Y \rightarrow Z$ be a binary function. Then we can form the map

$$PX \times PY \xrightarrow{\nabla} P(X \times Y) \xrightarrow{Pf} PZ$$

Operations on distributions:

Let $f: X \times Y \rightarrow Z$ be a binary function. Then we can form the map

$$PX \times PY \xrightarrow{\nabla} P(X \times Y) \xrightarrow{Pf} PZ$$

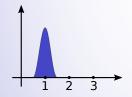
For example, the addition as a map $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ gives the *convolution* of real-valued random variables.

Operations on distributions:

Let $f: X \times Y \rightarrow Z$ be a binary function. Then we can form the map

$$PX imes PY \xrightarrow{\nabla} P(X imes Y) \xrightarrow{Pf} PZ$$

For example, the addition as a map $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ gives the *convolution* of real-valued random variables.

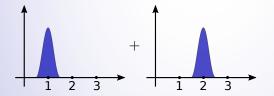


Operations on distributions:

Let $f: X \times Y \rightarrow Z$ be a binary function. Then we can form the map

$$PX imes PY \xrightarrow{\nabla} P(X imes Y) \xrightarrow{Pf} PZ$$

For example, the addition as a map $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ gives the *convolution* of real-valued random variables.



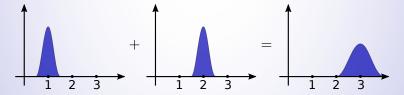
26 of 27

Operations on distributions:

Let $f: X \times Y \rightarrow Z$ be a binary function. Then we can form the map

$$PX imes PY \xrightarrow{\nabla} P(X imes Y) \xrightarrow{Pf} PZ$$

For example, the addition as a map $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ gives the *convolution* of real-valued random variables.



26 of 27

Some references

an Breugel, F. (2005).

The Metric Monad for Probabilistic Nondeterminism. www.cse.yorku.ca/~franck/research/drafts/ monad.pdf.

- Fritz, T. and Perrone, P. (2018). Bimonoidal structure of probability monads. Proceedings of MFPS 34.
- Fritz, T. and Perrone, P. (2020).
 Monads, partial evaluations, and rewriting. Proceedings of MFPS 36.
- Giry, M. (1982).

A Categorical Approach to Probability Theory. In Categorical aspects of topology and analysis, volume 915 of Lecture Notes in Mathematics.

Heunen, C., Kammar, O., Staton, S., and Yang, H. (2017).

A convenient category for higher-order probability theory.

Proceedings of LICS'17, (77):1-12.

Jacobs, B. (2018). From probability monads to commutative effectus. Journal of Logical and Algebraic Methods in Programming, 94:200–237.

Keimel, K. (2008).

The monad of probability measures over compact ordered spaces and its Eilenberg-Moore algebras. *Topology and its Applications*, 156(2):227–239.

nLab article.

Monads of probability, measures and valuations. ncatlab.org/nlab/show/probability+monad.

Perrone, P. (2018).

Categorical Probability and Stochastic Dominance in Metric Spaces.

PhD thesis, University of Leipzig.

www.paoloperrone.org/phdthesis.pdf

Perrone, P. (2019).

Notes on category theory with examples from basic mathematics. arXiv:1912.10642.