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Monads as extensions

Definition:
Let C be a category. A monad on C consists of:
• A functor T : C→ C;

• A natural transformation η : idC ⇒ T called unit;

• A natural transformation µ : TT ⇒ T called composition;

such that the following diagrams commute:

T TT

T

Tη

id
µ

T TT

T

ηT

id
µ

TTT TT

TT T

Tµ

µT µ

µ
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Monads as extensions

Idea:
A monad is like a consistent way of extending spaces to include
generalized elements and generalized functions of a specific kind.

A functor T : C→ C consists of:

1. To each space X , an “extended” space TX .

2. Given f : X → Y , an “extension” Tf : TX → TY .
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A natural transformation η : idC ⇒ T consists of:

1. To each X a map ηX : X → TX , usually monic.

2. This diagram must commute:

X Y

TX TY

ηX

f

ηY

Tf
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Monads as extensions

A natural transformation µ : TT ⇒ T , is:

1. For each X a map µX : TTX → TX ;

2. Again a naturality diagram as before.
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Definition:
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Monads as extensions

Definition:
Given Kleisli morphisms k : X → TY and h : Y → TZ , their Kleisli
composition is the morphism h ◦kl k given by:

X TY TTZ TZk Th µ

X Y Z

k
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Monads as extensions

Exercise:
Prove that Kleisli morphisms form a category thanks to the
commutativity of these diagrams:

TX TTX

TX

Tη

µ

TX TTX

TX

ηT

µ

TTTX TTX

TTX TX

Tµ

µT µ

µ

where the identity morphisms of the Kleisli category are given by the
units η : X → TX .
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Probability monads

Idea [Giry, 1982]:

Spaces of “random elements” generalizing usual elements.

• Base category C

• Functor X 7→ PX

• Unit δ : X → PX

• Composition
E : PPX → PX
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Probability monads

A Kleisli morphism from X to Y is a morphism X → PY . We can
interpret this as a “random function” or “random transition”.

X Y
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Probability monads

Given Kleisli morphisms k : X → PY and h : Y → PZ , their Kleisli
composition is the morphism h ◦kl k given by:

X PY PPZ PZk Ph E

X Y Z
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The distribution monad on Set

Definition:
Let X be a set. A f.s. distribution on X is a function p : X → [0, 1]
such that
• It is nonzero for finitely many x ∈ X ;

•
∑

x∈X p(x) = 1.

We denote by DX the set of f.s. distributions on X .
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The distribution monad on Set

Definition:
Let f : X → Y be a function and p ∈ DX . The pushforward of p
along f is the distribution f∗p ∈ DY given by

f∗p(y) :=
∑

x∈f −1(y)

p(x).

We denote the map f∗ : DX → DY by Df , this makes D a functor.
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The distribution monad on Set

Definition:
Let X be a set. The map δ : X → DX maps x ∈ X to the distribution
δx ∈ DX given by

δx(y) =

{
1 y = x ;

0 y 6= x .

This gives a natural map δ : X → DX , a component of the unit of the
monad.
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The distribution monad on Set

Definition:
Let X be a set. Given ξ ∈ DDX , define Eξ ∈ DX to be distribution
given by

Eξ(x) :=
∑
p∈DX

p(x) ξ(p).

This gives a natural map E : DDX → DX , a component of the
multiplication of the monad.
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The distribution monad on Set

Kleisli morphisms:

A Kleisli morphism for D is a function k : X → DY . In other words, it
is function k̄ : X × Y → [0, 1] such that

• For each x ∈ X , k̄(x ,−) : Y → [0, 1] is nonzero in finitely many
entries;

• For each x ∈ X ,
∑

y∈Y k̄(x , y) = 1.

Kleisli composition:

The Kleisli composition of k : X → DY and h : Y → DZ is given by
the Chapman-Kolmogorov equation:

(h ◦kl k)(x , z) =
∑
y∈Y

k(x , y) h(y , z).
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The Giry monad on Meas

Let X be a measurable space. Define PX to be

• The set of probability measures on X

• Equipped with the σ-algebra generated by the evaluation functions
εA : PX → R given by

p 7−→ p(A)

for all A ⊆ X measurable.

• Equivalently, the σ-algebra is generated by the “integration”
functions εf : PX → R given by

p 7−→
∫

f dp,

for all f : X → [0, 1] measurable.
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The Giry monad on Meas

Functoriality:

Let f : X → Y be a measurable function. Given a measure p ∈ PX ,
recall that the pushforward measure f∗p ∈ PY is given by

f∗p(B) := p(f −1(B)).

We get a measurable map Pf : PX → PY which makes P a functor.

Unit:
Given a measurable space X , to each x ∈ X we can give the Dirac
delta measure δx ∈ PX . This gives a measurable map δ : X → PX ,
which is natural, and forms a component of the unit of the monad.
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The Giry monad on Meas

Multiplication:

Given a measurable space X and a measure π ∈ PPX , we define the
measure Eπ ∈ PX by

Eπ(A) :=

∫
PX

p(A)dπ(p),

This gives a measurable map E : PPX → PX which is natural in X
and forms a component of the monad multiplication.
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The Giry monad on Meas

Kleisli morphisms:

A Kleisli morphism is a measurable map k : X → PY , in other words,
a Markov kernel between X and Y . Denote k(x) ∈ PY by kx .

Kleisli composition:

The composition of Kleisli morphisms reproduces the
Chapman-Kolmogorov equation for general measures. Given
k : X → PY and h : Y → PZ , we get that

(h ◦kl k)(x)(C ) =

∫
Y
hy (C )dkx(y)

for each x ∈ X and for each C ⊆ Z measurable.

20 of 27



The Giry monad on Meas

Kleisli morphisms:

A Kleisli morphism is a measurable map k : X → PY , in other words,
a Markov kernel between X and Y . Denote k(x) ∈ PY by kx .

Kleisli composition:

The composition of Kleisli morphisms reproduces the
Chapman-Kolmogorov equation for general measures. Given
k : X → PY and h : Y → PZ , we get that

(h ◦kl k)(x)(C ) =

∫
Y
hy (C )dkx(y)

for each x ∈ X and for each C ⊆ Z measurable.

20 of 27



Other probability monads

Category Monad (P) Points of PX

Set Distribution monad f.s. distributions
Meas Giry monad probability measures
Pol Giry monad Borel probability measures

QBS Prob. monad Eq. classes of R.V.s
DCPO Prob. powerdomain cont. valuations

Top Ext. prob. PD cont. valuations
Top Prob. monad τ -smooth Borel prob. measures

CHaus Radon monad Radon prob. measures
Met Kantorovich monad Radon prob. measures of FFM

More on the nLab, “probability monad” [nLab article].
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Joints and marginals

Idea:
Probability theory is mostly about interactions of random variables.

• Composite states
X × Y

• Given marginals

• Many possible joints

• One canonical
choice of
“independence”
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Joints and marginals

Idea:
Given objects X and Y , a probability distribution on X × Y is not
just pair of distributions on X and Y separately.
However, given p ∈ PX and q ∈ PY , we get a measure
p ⊗ q ∈ P(X × Y ).

PX × PY P(X × Y )∇

This gives a monoidal structure to the probability monad.
(Technically, we need ∇ together with a map 1→ P1, but for
probability monads 1 and P1 are uniquely isomorphic.)

23 of 27
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Joints and marginals

PX × PY × PZ P(X × Y )× PZ

PX × P(Y × Z ) P(X × Y × Z )

∇×id

id×∇ ∇

∇
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Joints and marginals

X × Y

X Y

π1 π2
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Joints and marginals

P(X × Y )

PX PY

Pπ1 Pπ2
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P(X × Y )

PX PX × PY PY
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Joints and marginals

P(X × Y )

PX PX × PY PY

Pπ1 Pπ2
∆

π1 π2

P(X × Y × Z ) PX × P(Y × Z )

P(X × Y )× PZ PX × PY × PZ

∆×id

id×∆ ∆

∆
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Joints and marginals

Operations on distributions:

Let f : X × Y → Z be a binary function. Then we can form the map

PX × PY P(X × Y ) PZ∇ Pf

For example, the addition as a map R× R→ R gives the convolution
of real-valued random variables.

+ =
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